
Ensemble data assimilation and particle filters

Hans R. Künsch

Seminar for Statistics
ETH Zurich

Geilo Winter School, January 2019

Original parts are based on joint work with Marco Frei and Sylvain
Robert

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 1 / 71

About myself

I was born in Zurich, went to school in Zurich, studied math at
ETH Zurich, did my PhD at ETH Zurich and was a professor at
ETH Zurich for over 30 years.
Between my first degree and my PhD I studied for 2 years in
Tokyo, Japan, and I was a postdoc again in Tokyo for 1.5 years.
My research started in probability theory, then I moved to statistics
where I worked in the areas of robust statistics, spatial statistics
and time series, and I am interested in environmental applications
(soil, aquatic systems, climate and weather).
My two most cited papers are “The jackknife and the bootstrap for
general stationary observations” and “Practical identifiability
analysis of large environmental simulation models”
As a mathematician, I like formulae because they help me to think
clearly. I will do my best to explain what a formula wants to say.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 2 / 71

Overview I

I will use the framework of state space models. These are
dynamical systems with partial and noisy observations at discrete
time points.
Examples are numerical or stochastic models for weather,
earthquakes, flow in porous media, or statistical models in
economics, finance, ecology, systems biology, etc..
Data assimilation or filtering is the estimation of the state of the
system at some time t and the quantification of its uncertainty,
given all observations up to time t . This is the basis for predicting
the system.
State space models often contain unknown static parameters
related to the time evolution of the system or to the measurement
process. Methods to estimate such parameters also rely on
filtering.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 3 / 71

Overview II

In these lectures, I want to introduce the basic concepts for
non-specialists and give an outlook on some new and ongoing
research.
Statisticians, geophysicists and applied mathematicians have
made contributions, often without much exchange of ideas and
methods. This has only recently started to change.
It is not possible to cover everything, the selection is my own.
I prepared these slides without knowing the exact contents and
the notation in the lectures by Remus. I have made some
adjustments in the last minutes, but the coordination is not perfect.
The emphasis here is on the construction and heuristic properties
of algorithms.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 4 / 71

Achievements and challenges

Particle filters have been extremely successful in tracking
problems and image analysis because they can deal with
occasional ambiguity.
Local Ensemble Transform Kalman filters are regularly used in
operational weather forecasting. Only few particle filter based
methods are have been tested in weather forecasting experiments
with set-ups close to operational conditions.
Problems with unknown static parameters are much harder.
Particle MCMC are promising, but are until now limited to
problems of intermediate complexity.
...

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 5 / 71

A cycled experiment in large scale weather prediction

Verification of different 1-h forecasts of relative humidity against all
radiosonde measurements over 12 days. Two scores are used, CRPS
(left) and bias (right). In the big plot, 3 particle type methods are
compared to an Ensemble Kalman method (negative values imply
improvements), the small plot shows the score of the Ensemble
Kalman method.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 6 / 71

1 Introduction

2 Basics about State Space Models and Filtering
State space models
Prediction, filtering, data assimilation
Monte Carlo (Ensemble) filters

3 Breakdown and Modifications of PF and EnKF

4 Localization

5 Filtering in Numerical Weather Prediction

6 Smoothing

7 Parameter estimation

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 7 / 71

State space models

A state space model consists of a dynamical system (X t) and partial
and noisy observations (Y i) of the state of the system at some
discrete time points ti .

X t contains a complete description of the system at time t . Its
dynamics is given by a differential equation or a Markov process in
discrete or continuous time. X t is however not fully observable.

Observations Y i are conditionally independent given the state process,
and Y i depends only on X ti .

The goal is to estimate and predict the state of the system sequentially
based on observations Y 1,Y 2, In some applications, one has to
estimate also parameters of the dynamics of the system or of the
distribution of the observation noise.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 8 / 71

Example 1: Lorenz 96

Because any real data assimilation example from atmospheric physics
or oceanography is extremely high-dimensional and complex, often
simple toy models are used as testbeds. The two most famous were
proposed by Ed Lorenz in 1963 and 1996.

The Lorenz 96 model is

dXt ,k

dt
= (Xt ,k−1 − Xt ,k−2)Xt ,k−1 − Xt ,k + 8, k = 1, . . . ,40

with circular state components: Xt ,k ≡ Xt ,k+40. It mimicks large scale
motions of a one-dimensional atmosphere.

Every second component is observed with additive Gaussian noise.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 9 / 71

Example 2: A nonlinear one-dim model

This example was constructed (Andrade-Netto et al.) to illustrate the
effects of nonlinear dynamics and observations on filtering. I will use it
in the exercise

Xt = Mt−1(Xt−1) + ηt , ηt ∼ N (0,10)

Mt (x) =
x
2

+ 25
x

1 + x2 + 8 cos(1.2 · t)

Yt = 0.05X 2
t + εt , εt ∼ N(0,1).

Mt is strongly expansive near the origin, but contractive for |x | large.
Because only the square of the state is observed, the sign must be
identified from the dynamics of the state.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 10 / 71

Example 3: Fish population

This model is used to analyze data on the abundance of cod in the
North Atlantic (Aeberhard et al. 2018, submitted). Here Xt contains the
abundances Na,t and the fishing mortality rates Fa,t for age classes
a = (≤ 3,4, . . . ,9,≥ 10) and year t . The observations consist of the
number of catches Ca,t and indices Ia,t from surveys.

The dynamics of the state is based on “biological common sense”,
Na,t = number of fish alive in age class a− 1 at the beginning of year
t − 1 that didn’t die of natural causes nor got caught during year t − 1,
and simple persistence assumptions, Fa,t = Fa,t−1, both with
multiplicative noise.

The catches Ca,t are proportional to the number of fish which died
during year t (with constant equal to ratio of fishing to total mortality)
and the surveys Ia,t are proportional to the number of fish alive in year
t (with constants equal to so-called catchability coefficients), again with
multiplicative noise.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 11 / 71

State space models: Operational form

To make the notation easier, I assume that the model is time
homogeneous and observation times are ti = i and I write t instead of
ti . Then a general state space model has the form

X t = M(X t−1, ηt), Y t = H(X t , εt)

where the system and observation noise variables ηt and εt are
independent.

This formulation is most useful if you want to simulate the model:
Choose an initial value x0, simulate the noise variables and then
proceed iteratively. However, for other purposes an equivalent
formulation with conditional distributions is prefered.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 12 / 71

State space models: Conditional distributions
For the state variables, we have:

X t |X t−1 = x t−1 ∼ m(x t |x t−1)dx t

and this is not changed if additional state variables from the past are
known (Markov property). For the observations, we have

Y t |X t = x t ∼ h(y t |x t)dy t

and this conditional distribution is not changed if additional states or
observations (past or future) are known.

Passing from one of these two descriptions to the other is difficult in
general. If the noise variables are additive, then

m(x t |x t−1) = fη(x t −M(x t−1))

and similarly for h. The case of a deterministic state dynamics is
included with a Dirac function for fη.

For some methods we only need to simulate from the model. However,
h must be known and should be a proper density.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 13 / 71

Graphical representation of state space models

The conditional independence properties between the variables of a
state space model from the previous slide can be represented by the
following directed acyclic graph

. . . → X t−1 → X t → X t+1 → . . .
↓ ↓ ↓

. . . Y t−1 Y t Y t+1 . . .

From this graph, additional conditional independence relations can be
deduced. We will see examples in the third lecture when we discuss
smoothing.

The graph also shows that Y t depends on all past observations, i.e.
(Y t) is not a Markov chain.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 14 / 71

Basics of data assimilation/filtering

For predicting the state at time t based on all observations up to time
t − 1 we need the prediction density, the conditional density of X t
when Y 1 = y1, Y 2 = y2, ..., Y t−1 = y t−1, or in shorthand notation
Y 1:t−1 = y1:t−1, is known.

For estimating the state at time t based on all observations up to time t
we need the filter density, the conditional density of X t when
Y 1:t = y1:t , is known.

The means (or medians) of these densities give the best estimates, the
(co)variance and quantiles quantify uncertainty.

Because these densities appear all the time, I use the special symbols
πp

t and πf
t for them. Moreover, because the values y1:t−1 of the

observations are considered fixed, I write πp
t (x t) instead of

πp
t (x t |y1:t−1). If there is no confusion, I also drop the subscript t .

Data assimilation uses the terms background instead of prediction and
analysis instead of filter density.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 15 / 71

Recursions for prediction and filter densities

The prediction and filter densities can be computed recursively:

. . .→ πf
t−1 → πp

t → πf
t → . . .

πf
t−1 → πp

t (Propagation): By the law of total probability (and
conditional independence):

πp
t (x t) =

∫
m(x t |x t−1)πf

t−1(x t−1)dx t−1

πp
t → πf

t (Update): By Bayes formula with prior πp and likelihood h:

πf
t (x t) =

πp
t (x t)h(y t |x t)

p(y t |y1:t−1)
∝ πp

t (x t)h(y t |x t)

where p(y t |y1:t−1) =
∫
πp

t (x t)h(y t |x t)dx t .

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 16 / 71

Monte Carlo (Ensemble) filters

Recursions from the previous slides typically cannot be computed
analytically or numerically, except in the linear Gaussian case (Kalman
filter) or when the state space is finite (Baum-Welch).

Monte Carlo filters approximate πp
t and πf

t by samples or ensembles of
weighted “particles” (xp

t ,j ,w
p
t ,j) and (x f

t ,j ,w
f
t ,j) (j = 1,2, . . . ,N). Then

πp
t (x t) ≈

N∑
j=1

wp
t ,j δ(x t − xp

t ,j)

and for any (bounded) test function ψ of the state:

E
[
ψ(X t)|y1:t−1

]
=

∫
ψ(x t)π

p
t (x t)dx t ≈

N∑
j=1

ψ(xp
t ,j)w

p
t ,j

and similarly for the filter.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 17 / 71

Propagation and update for particles

In the propagation step, filter particles move forward according to the
dynamics of the state, independently of each other, to become the next
prediction particles. Weights do not change:

xp
t ,j ∼ m(x t |x f

t−1,j), wp
t ,j = w f

t−1,j

The computational burden of this step often limits the size N of the
ensemble.

Updating converts the prediction sample into the filter sample by
changing the weights and/or the positions of particles. The two main
methods are the Particle Filter (PF) and the Ensemble Kalman Filter
(EnKF). Since we consider the update for a fixed time point t I drop the
subscript t in the following.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 18 / 71

Update step for basic particle filter

The particles x f
j should be drawn from πf (x) ∝ πp(x)h(y |x). Drawing

from the posterior in high dimensions is difficult in general. Here it is
worse because there is no formula for πp, only a sample.

The particle filter uses

πp(x) ≈
N∑

j=1

wp
j δ(x − xp

j)

Then Bayes formula gives

πf (x) ≈
N∑

j=1

w f
j δ(x − xp

j), w f
j ∝ wp

j h(y |xp
j).

Hence the particles don’t move, only the weights change, depending
on how well a particle fits to the new observation.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 19 / 71

Particle filter update: Resampling

Problem: In the iteration weights become quickly unbalanced, and
computation is wasted for extremely unlikely time evolutions. In the
end, the filter looses track.

Basic remedy to counteract weight unbalance is resampling:

Set x f
i = xp

j with probability wp
j , w f

i =
1
N

Particles xp
j with a poor fit to the new observation die, those with a

good fit appear Nj = |{i ; x f
i = xp

j }| times.

Resampling creates ties among particles and reduces diversity. If the
dynamics of the state is stochastic and particles are propagated
independently, some diversity is restored, but one does not know if it
represents the true uncertainty at the next prediction. Resampling is
only a partial remedy.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 20 / 71

Resampling and effective sample size

Resampling introduces an additional Monte Carlo error because w f
j is

replaced by the relative frequency Nj/N. To reduce this, resample only
for the next propagation and only if diversity of weights is low.

Diversity is usually measured by effective sample size ESS:

ESS =

 N∑
j=1

(w f
j)2

−1

.

ESS = 1 if one w f
j = 1, ESS = N if all w f

j = 1/N. The definition is
based on an approximation of the asymptotic variance of weighted
samples (Liu, 1996).

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 21 / 71

Balanced sampling

Monte Carlo error of resampling can also be reduced by balanced
sampling, meaning that |Nj − Nw f

j | < 1. The figure illustrates such a
scheme.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 22 / 71

Update for the basic EnKF

The Ensemble Kalman filter estimates the mean µp and covariance Pp

of πp and assumes that πp is Gaussian (and hence πp is determined).

If h = N (Hx ,R) and πp = N (µp,Pp), then by Bayes formula
πf = N (µf ,P f) where

µf = µp + K (y − Hµp), P f = Pp − KHPp

and K is the Kalman gain

K = PpHT (HPpHT + R)−1

The Ensemble Kalman filter plugs the estimated values of µp and Pp

into these formulae and then transforms the particles xp
i into particles

x f
i with the desired first two moments.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 23 / 71

Stochastic EnKF

Let K̂ be the Kalman gain with estimated prediction covariance P̂p (the
observation error covariance R is assumed to be known).

The stochastic version of the EnKF generates N artificial observation
errors εi ∼ N (0,R) and sets

x f
i = xp

i + K̂ (y − Hxp
i − εi)

The move of particle xp
i depends on how much the actual observation

y differs from an artificial observation yp
i = Hxp

i + εi , assuming that
the state equals xp

i . One can check that the filter ensemble has the
desired first two moments.

There is a regression interpretation of this: One regresses yp
i on xp

i
The estimated regression line applied to the actual observation y gives
the filter mean x̄ f , the residuals quantify uncertainty.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 24 / 71

Regression interpretation of EnKF

Left: Forward regression line y = Hx and points (xp
i , y

p
j). Red line is at

actual observation y .
Right: Inverse regression line x = x̄p + K̂ (y − ȳp). Dotted red line is at
x̄ f , horizontal residuals equal x f

i − x̄ f .

●

●

●

●

●

●

●

●

●

●

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
5

1.
5

2.
5

3.
5

4.
5

5.
5

x

y

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.
5

1.
5

2.
5

3.
5

4.
5

5.
5

x

y

●

●

●

●

●

●

●

●

●

●

●

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 25 / 71

The square root EnKF

The square root version of the EnKF computes x̄ f and sets

x f
i = x̄ f + (∆X p)W

where the matrix ∆X p = (xp
1 − x̄p|...|xp

N − x̄p) and W satisfies a
certain matrix equation.

In both versions, changing the observation changes the location of the
ensemble, but not the spread nor the shape of the point cloud. For a
non-Gaussian prior or a non-Gaussian likelihood, the shape and the
spread of the posterior typically changes if the observed value
changes.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 26 / 71

Particle vs. Ensemble Kalman filter

PF originated in statistics (Gordon et al., 1993), EnKF in
geophysics (Evensen, 1994).
PF uses weighting and resampling. It works for arbitrary
observation densities h.
PF is consistent under very weak assumptions, but degenerates
easily, in particular in high dimensions.
EnKF moves the particles towards the observations. The
algorithm (essentially) assumes additive observation error with
constant variance.
EnKF is consistent only if observation is a linear function of the
state plus independent Gaussian errors and if πp is Gaussian.
However, a simple modification makes it extremely robust in
practice.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 27 / 71

EnkF for banana-shaped prediction
Black: prediction ensemble (2-d). Observation Y ∼ N (x1,0.52).
Blue: EnKF updates for two values y = ±1. Left: stochastic (perturbed
observations), Right: deterministic (square-root).

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●●● ●●
●

●
●

●

●

●
●

●

●

●
●

●

●
●●

●

●
● ● ●

●●
● ●●

●
●

●
●

●

●●
●

●

●

●

●
●

●

●● ●
● ●
●

● ●

●

●●
●

●

●

●

●

●

●● ●

●

●● ●
●

●

●●
●

● ●
●

●
●

●

●
●

●

●

●

●

●
● ●

●

●
●

●●
●

●
●

● ●
●●

●

●●
●

●●
●

●

●●
●

●
●
●

● ●

●

●
●

●

●

●

●●● ●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●
●

●

●

●●
●

●●● ●●

●

●
●

●

●
●

●

●

● ● ●
●

●

●

●
●

●

●● ●

●
●●

●
●●

●

●
●

●

●

●●
●

●
●●

●

●●
●

● ●● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

● ●

● ●●

●

● ●

●

●●● ●
●

● ● ●
●●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●● ●

●●
●

● ●
●

●

●●
●

●
●

●

●

●
●●

●●●
●

●

●
●●●

● ●

●●

●

●

● ●
●●

●

●●
●

●●
●●

●

●

●
● ●

●
●●●

●● ●

●

●

●

●●

●

●●●
●

●
●●

●

●

●

●

●

●● ● ●
●
●

●

●

●

●
●

●

●

●

● ●●● ●●
●

●

●
●●

●

●

●

●

●●
●

●
●

●

●

●
● ●

●
●

●

●
●
●
●● ●● ●

●
●

● ●

● ●
●

●

●
●

●

●

●

●
●

●

● ●●

●

●

●

●

●
●

●
●

●

●
● ●● ●

●

●

●

●

●

●

●●
●

●
●

● ●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

● ●

●

●

●●
●

●
●

●

● ●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

−3 −2 −1 0 1 2 3 4

−
2

0
2

4
6

POEnKF

x1

x2

●
●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
● ●

●
●●

●

●

● ●
●

●

●

●
●

●
●

●

●
●

●

●
●

●

● ●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●●

●

●
●

●●●
● ●

● ●

●
●

●
●

●

●

●

●
●
●

●●

●

●

●

●●
●

●

●

●
●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

● ●
●

●
●

●●
●

●
●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
● ●
●
●

● ●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●
●

●

●
●

●

●● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●
●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●
●●

●
●

●

●

●
●

● ●
●

●

●

●
●

●

●

● ●
●

●

● ●●

●
●●●

●●●● ●

●

●
●

● ●
● ●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●
● ●●

●
● ●

●●

●
●

● ●
●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●●

●

●●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●●
●

●
●

●
●

●

●
●

●
●

●
●

●

●

●●● ●●
●

●
●

●

●

●
●

●

●

●
●

●

●
●●

●

●
● ● ●

●●
● ●●

●
●

●
●

●

●●
●

●

●

●

●
●

●

●● ●
● ●
●

● ●

●

●●
●

●

●

●

●

●

●● ●

●

●● ●
●

●

●●
●

● ●
●

●
●

●

●
●

●

●

●

●

●
● ●

●

●
●

●●
●

●
●

● ●
●●

●

●●
●

●●
●

●

●●
●

●
●
●

● ●

●

●
●

●

●

●

●●● ●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●
●

●

●

●●
●

●●● ●●

●

●
●

●

●
●

●

●

● ● ●
●

●

●

●
●

●

●● ●

●
●●

●
●●

●

●
●

●

●

●●
●

●
●●

●

●●
●

● ●● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

● ●

● ●●

●

● ●

●

●●● ●
●

● ● ●
●●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●● ●

●●
●

● ●
●

●

●●
●

●
●

●

●

●
●●

●●●
●

●

●
●●●

● ●

●●

●

●

● ●
●●

●

●●
●

●●
●●

●

●

●
● ●

●
●●●

●● ●

●

●

●

●●

●

●●●
●

●
●●

●

●

●

●

●

●● ● ●
●
●

●

●

●

●
●

●

●

●

● ●●● ●●
●

●

●
●●

●

●

●

●

●●
●

●
●

●

●

●
● ●

●
●

●

●
●
●
●● ●● ●

●
●

● ●

● ●
●

●

●
●

●

●

●

●
●

●

● ●●

●

●

●

●

●
●

●
●

●

●
● ●● ●

●

●

●

●

●

●

●●
●

●
●

● ●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

● ●

●

●

●●
●

●
●

●

● ●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

−3 −2 −1 0 1 2 3 4

−
2

0
2

4
6

EnSRF

x1

x2

● ●●

●
●

●

●
●

●

●
●●●

●

●
●●

●
●

●
●●

●

●

●

●
●

●

● ● ●● ●
●

●

●
●

●
●

●
●●

●●
●
● ●

●

●

●●
● ●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
● ●●

●

●
●

●

●
●●

●

●

●

●● ●
● ●

●●

●
●

● ●
●

●

●

●

●●
●●
●●

●

●
●

● ●

●●
●

●

●

●●
●

●
●● ●
●●
● ●●
●● ●

●
● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

● ●

●● ●●
●

●

●

●

●

● ●
●

●
●

●
●

●

●
●

●

●

●●

●

●●

●● ●● ● ●
●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●●
●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●●
●

●

● ●●
●

●
● ●

●
●

●
●●

●

●

●

●

●
●

●
●

●
● ● ●

●

●●

●

●
●
●

●
●

●
●

●

●
●

● ●

●

●

●
●

●

●

●
●

●
● ●●●● ● ●● ●
●

●
●

●

●

●

●
●

●

● ●●

●

●

●●

●

●
●

●

●
●●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●

● ●●
●

●

●●●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●
● ●●

●

●●

●

●
●
●
●
●●

●

● ● ● ●●●
●

●
●

●
●

●●

●

●

● ●

●

●●●

●

●

●

●

●● ●

●
● ●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●
● ●

●

●●

●

●●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●●● ●●
●

●
●

●

●

●
●

●

●

●
●

●

●
●●

●

●
● ● ●

●●
● ●●

●
●

●
●

●

●●
●

●

●

●

●
●

●

●● ●
● ●
●

● ●

●

●●
●

●

●

●

●

●

●● ●

●

●● ●
●

●

●●
●

● ●
●

●
●

●

●
●

●

●

●

●

●
● ●

●

●
●

●●
●

●
●

● ●
●●

●

●●
●

●●
●

●

●●
●

●
●
●

● ●

●

●
●

●

●

●

●●● ●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●
●

●

●

●●
●

●●● ●●

●

●
●

●

●
●

●

●

● ● ●
●

●

●

●
●

●

●● ●

●
●●

●
●●

●

●
●

●

●

●●
●

●
●●

●

●●
●

● ●● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

● ●

● ●●

●

● ●

●

●●● ●
●

● ● ●
●●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●● ●

●●
●

● ●
●

●

●●
●

●
●

●

●

●
●●

●●●
●

●

●
●●●

● ●

●●

●

●

● ●
●●

●

●●
●

●●
●●

●

●

●
● ●

●
●●●

●● ●

●

●

●

●●

●

●●●
●

●
●●

●

●

●

●

●

●● ● ●
●
●

●

●

●

●
●

●

●

●

● ●●● ●●
●

●

●
●●

●

●

●

●

●●
●

●
●

●

●

●
● ●

●
●

●

●
●
●
●● ●● ●

●
●

● ●

● ●
●

●

●
●

●

●

●

●
●

●

● ●●

●

●

●

●

●
●

●
●

●

●
● ●● ●

●

●

●

●

●

●

●●
●

●
●

● ●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

● ●

●

●

●●
●

●
●

●

● ●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

−3 −2 −1 0 1 2 3 4

−
2

0
2

4
6

POEnKF

x1

x2

●
●

●

●

●●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
● ●

●
●●

●

●

● ●
●

●

●

●
●

●
●

●

●
●

●

●
●

●

● ●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●●

●

●
●

●●●
● ●

● ●

●
●

●
●

●

●

●

●
●
●

●●

●

●

●

●●
●

●

●

●
●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

● ●
●

●
●

●●
●

●
●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●
● ●
●
●

● ●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●
●

●

●
●

●

●● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●
●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●
●●

●
●

●

●

●
●

● ●
●

●

●

●
●

●

●

● ●
●

●

● ●●

●
●●●

●●●● ●

●

●
●

● ●
● ●

●

●

●●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●

●

●
●●

●

●
●

●
●

●

●
● ●●

●
● ●

●●

●
●

● ●
●

●●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●
●●

●

●●
●

● ●

●

●

● ●

●

●

●

●

●

●

●

●●
●

●●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●●● ●●
●

●
●

●

●

●
●

●

●

●
●

●

●
●●

●

●
● ● ●

●●
● ●●

●
●

●
●

●

●●
●

●

●

●

●
●

●

●● ●
● ●
●

● ●

●

●●
●

●

●

●

●

●

●● ●

●

●● ●
●

●

●●
●

● ●
●

●
●

●

●
●

●

●

●

●

●
● ●

●

●
●

●●
●

●
●

● ●
●●

●

●●
●

●●
●

●

●●
●

●
●
●

● ●

●

●
●

●

●

●

●●● ●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●
●

●

●

●●
●

●●● ●●

●

●
●

●

●
●

●

●

● ● ●
●

●

●

●
●

●

●● ●

●
●●

●
●●

●

●
●

●

●

●●
●

●
●●

●

●●
●

● ●● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

● ●

● ●●

●

● ●

●

●●● ●
●

● ● ●
●●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●● ●

●●
●

● ●
●

●

●●
●

●
●

●

●

●
●●

●●●
●

●

●
●●●

● ●

●●

●

●

● ●
●●

●

●●
●

●●
●●

●

●

●
● ●

●
●●●

●● ●

●

●

●

●●

●

●●●
●

●
●●

●

●

●

●

●

●● ● ●
●
●

●

●

●

●
●

●

●

●

● ●●● ●●
●

●

●
●●

●

●

●

●

●●
●

●
●

●

●

●
● ●

●
●

●

●
●
●
●● ●● ●

●
●

● ●

● ●
●

●

●
●

●

●

●

●
●

●

● ●●

●

●

●

●

●
●

●
●

●

●
● ●● ●

●

●

●

●

●

●

●●
●

●
●

● ●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

● ●

●

●

●●
●

●
●

●

● ●
●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

−3 −2 −1 0 1 2 3 4

−
2

0
2

4
6

EnSRF

x1

x2

● ●●

●
●

●

●
●

●

●
●●●

●

●
●●

●
●

●
●●

●

●

●

●
●

●

● ● ●● ●
●

●

●
●

●
●

●
●●

●●
●
● ●

●

●

●●
● ●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●
● ●●

●

●
●

●

●
●●

●

●

●

●● ●
● ●

●●

●
●

● ●
●

●

●

●

●●
●●
●●

●

●
●

● ●

●●
●

●

●

●●
●

●
●● ●
●●
● ●●
●● ●

●
● ●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

● ●

●● ●●
●

●

●

●

●

● ●
●

●
●

●
●

●

●
●

●

●

●●

●

●●

●● ●● ● ●
●

●

●
●

●

●
●

● ●

●

●

●

●

●

●
●●
●

● ●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●●
●

●

● ●●
●

●
● ●

●
●

●
●●

●

●

●

●

●
●

●
●

●
● ● ●

●

●●

●

●
●
●

●
●

●
●

●

●
●

● ●

●

●

●
●

●

●

●
●

●
● ●●●● ● ●● ●
●

●
●

●

●

●

●
●

●

● ●●

●

●

●●

●

●
●

●

●
●●

●
●

●

●

●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●

● ●●
●

●

●●●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●●
● ●●

●

●●

●

●
●
●
●
●●

●

● ● ● ●●●
●

●
●

●
●

●●

●

●

● ●

●

●●●

●

●

●

●

●● ●

●
● ●●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●
●

●

●

●
●●

●

●
● ●

●

●●

●

●●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 28 / 71

Particle filter for banana-shaped prediction

Particle filter update for the same situation.

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●●●
●●

●
●

●
●

●

●
●

●

●

●
●

●

●
●●

●

●
● ● ●

●●
● ●●

●
●

●
●

●

●●
●

●

●

●

●
●

●

●● ●
● ●
●

● ●

●

●●
●

●

●

●

●

●

●● ●

●

●● ●
●

●

●●
●

● ●
●

●
●
●

●
●

●

●

●

●

●
● ●

●

●
●

●●
●

●
●

● ●
●●

●

●●
●

●●
●

●

●●
●

●
●
●

● ●

●

●
●

●

●

●

●●
● ●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●
●

●

●

●●
●

●●
● ●●

●

●

●

●

●
●

●

●

● ● ●
●

●

●

●
●

●

●● ●

●
●●

●
●●

●

●
●

●

●

●●
●

●

●●

●

●●
●

● ●● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

● ●

● ●●

●

● ●

●

●●● ●
●

●
● ●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●● ●

●●
●

●
●

●

●

●
●

●
●

●

●

●

●
●●

●●●
●

●

●

●●
●

● ●

●●

●

●

● ●
●●

●

●●
●

●●
●●

●

●

●
● ●

●
●

●●
●● ●

●

●

●

●●

●

●●●
●

●
●●

●

●

●

●

●

●● ● ●
●
●

●

●

●

●

●
●

●

●

●●
●●

●●
●

●

●
●●

●

●

●

●

●●
●

●
●

●

●

●
● ●

●
●

●

●
●
●
●● ●● ●

●
●

● ●

● ●
●

●

●
●

●

●

●

●
●

●

●●●

●

●

●

●

●
●

●
●

●

●
● ●● ●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

● ●

●

●

●●
●

●
●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−3 −1 0 1 2 3 4

−
2

0
2

4
6

Particle filter

x1

x2

●
●

●
●

●●● ●
●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●
●

●
●

●

●

●●

●●

●

●

● ●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●

●
●

●

● ●

●●

●
●

●
●
●

●

●● ●
●

●●
●

●

●
●●
● ●

●
●

●● ●
●

●

●
●

●

●
●

●

●

●

●

●

●

● ●

●
●

●●
●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●
●●

●

●
●

●

●
●●

●

●

●●

●
●●

●

●
●

●
●

●

●

●
●

● ●●●●
●

●
●

●
●

●

●
●

● ●
●

●

●

●

●●
●

●
●

●

●
●●

●

●
●

●

●

●

●●● ●● ●
●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●
●

●

● ● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●●

●●
●

●

●

●
●

●

●

●●

●

●

●
●

●

●
●

● ●
●

●
●

●

●

●

●

●
●

●●
●

●

●
●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●● ●

●

●
●

●
●●

●

●

●
● ●

●

●●

●

●
●●

●

●●
●

●

●
●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●●

●

●
●

●

●

●

●

●

● ●
●

●

●●
●

●

●

●● ●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●

●

●

●

●

●

● ●

●
●● ●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●●● ●

●

●
●

●

●

●
●

●
●

●
●

●

●

●●●
●●

●
●

●
●

●

●
●

●

●

●
●

●

●
●●

●

●
● ● ●

●●
● ●●

●
●

●
●

●

●●
●

●

●

●

●
●

●

●● ●
● ●
●

● ●

●

●●
●

●

●

●

●

●

●● ●

●

●● ●
●

●

●●
●

● ●
●

●
●
●

●
●

●

●

●

●

●
● ●

●

●
●

●●
●

●
●

● ●
●●

●

●●
●

●●
●

●

●●
●

●
●
●

● ●

●

●
●

●

●

●

●●
● ●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●

●
●

●

●

●●
●

●●
● ●●

●

●

●

●

●
●

●

●

● ● ●
●

●

●

●
●

●

●● ●

●
●●

●
●●

●

●
●

●

●

●●
●

●

●●

●

●●
●

● ●● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●

● ●

● ●●

●

● ●

●

●●● ●
●

●
● ●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●● ●

●●
●

●
●

●

●

●
●

●
●

●

●

●

●
●●

●●●
●

●

●

●●
●

● ●

●●

●

●

● ●
●●

●

●●
●

●●
●●

●

●

●
● ●

●
●

●●
●● ●

●

●

●

●●

●

●●●
●

●
●●

●

●

●

●

●

●● ● ●
●
●

●

●

●

●

●
●

●

●

●●
●●

●●
●

●

●
●●

●

●

●

●

●●
●

●
●

●

●

●
● ●

●
●

●

●
●
●
●● ●● ●

●
●

● ●

● ●
●

●

●
●

●

●

●

●
●

●

●●●

●

●

●

●

●
●

●
●

●

●
● ●● ●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

● ●

●

●

● ●

●

●

●
●

●

●

● ●

●

●

●●
●

●
●

●

●●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

−3 −1 0 1 2 3 4

−
2

0
2

4
6

Particle filter

x1

x2

●● ●●
●●

● ●● ●●
●●

●●

●
● ●●

●
●● ●

●

● ●
●
●● ●●

●●

●

●
●● ●

●
●

●●

●

●●

●
●

●●●
●●

●
●

●
●

●
●

●

●

●
●
●

● ●
●

●

● ●● ●●●
●
●
●●

●

●

●
● ●

●

● ●● ●
●
●

●●
● ●
● ●

●

●●
●

● ● ●●●

●

● ●
●●●

●

● ●●
●●

●
●

●
●●●●●●

●

●
●●

●
●

●●
●● ●

●

●●
●

●
●

●●●
●● ●● ●● ●●

●
●

●

●

●
● ●●

●● ●● ●●
●● ●

●

●
● ●

●
● ●

● ●

●

●
●● ●● ●●

●

●●
●

●

●

●

● ●●● ●
●

●
●

●●
●

●●
● ●

●
●
●●

●
● ●●● ●●

●
●●

● ●

●

●
●

●●
●

●

●
●

●

●

●

●● ●

●

● ● ●
●

● ●● ●●
●●

●
●

●●
●

●
●

●
●

●

●
●●●

●

●

●
●●●●

●●●
●●

●

●
●

●●
●

●
●

●
●

● ●●

●

●
● ●

●●

●
●

●
●

●

●
●

●
●●

●

●

●●

●● ●
●

●

●
●

●
●

● ●●
●
●

●
●●

●

● ●●
●

●
●

●
●

● ●●

●
●

●
●

●
●●
●

●●
● ●

●

●

● ●
● ●

●

●
●●

●
●● ●

●●
●

●
●

●

●

●
●

●
●

●●

●
●●

●
●

●

●●

●●
● ●●

●

●
●

● ●
●●●
●
●

●● ●●●

●

●● ●
●

●

●
●●●

●

●
●

●

● ●
●

●●
● ●

●
●

●
●
●

●●●
●

●
●

●●
●●●

● ●●

●
●

● ●

● ●●

●
● ●●

●
●●●

●●●●
●

●

●● ●●
●

●

●●

●

●
● ●●

● ●●
●

● ●

●

● ●

●
●●●

●

●

●
●

●
●

Shape and spread of true πf depend here on y . The EnKF allows only
the mean of πf to depend on y .

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 29 / 71

1 Introduction

2 Basics about State Space Models and Filtering

3 Breakdown and Modifications of PF and EnKF
EnKF: Covariance tapering
Auxiliary and related particle filters
The Ensemble Kalman Particle Filter

4 Localization

5 Filtering in Numerical Weather Prediction

6 Smoothing

7 Parameter estimation

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 30 / 71

Covariance tapering

The EnKF needs to estimate the prediction covariance Pp. The simple
empirical covariance

P̂p =
1

N − 1

∑
i

(xp
i − xp)(xp

i − xp)T =
1

N − 1
(∆X p)(∆X P)T

is unstable in typical examples and causes breakdown of the EnKF.

The standard way to regularize the estimate is to multiply P̂p

elementwise by a banded correlation matrix ρ (called tapering). If
components of x correspond to different spatial locations, this is
justified by lack of correlation at large distances. If ρ is positive definite,
then so is the regularized estimate.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 31 / 71

Tapering the EnKF in the Lorenz 96 model
Filter ensemble (red) and truth (black) in cycles 1,2, . . .20.
Range of taper = 10 (left) and =5 (right).

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 32 / 71

Tapering the EnKF in the Lorenz 96 model, ctd.
Filter ensemble (red) and truth (black) in cycles 21,31, . . .201.
Range of taper = 10 (left) and = 5 (right).

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 33 / 71

Breakdown of the particle filter
Bickel et al. (2008) give a theoretical explanation why the particle filter
breaks down in high dimensions:

Typically, log h(y |xp
j) is approximately normal with some mean

µq = O(q) and standard deviation σq = O(
√

q). E.g. if q components
of x are observed with i.i.d. normal observations errors:

log h(y |xp
j) = − 1

2σ2

q∑
α=1

(yα − xp
α,j)

2

Hence the ratio of the two largest weights behaves like the ratio of the
two largest values (Z(N),Z(N−1)) in a sample of N lognormal random
variables. By standard results from extreme value theory:

Z(N−1)

Z(N)
∼ exp(−

σq√
2 log N

E)

where E is a standard exponential random variable.

Hence the maximal weight converges to 1 if N = o(exp(q)).
Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 34 / 71

Reweighting and propagation in reverse order

If the transition density is known analytically, we can do the
propagation step in closed form:

πp
t (x t) ≈

∑
j

w f
t−1,j m(x t |x f

t−1,j)

πf
t (x t) ∝

∑
j

w f
t−1,j m(x t |x f

t−1,j)h(y t |x t)︸ ︷︷ ︸
=p(x t ,y t |x f

t−1,j)

(p is the generic symbol for a conditional density whose arguments
indicate which random variables are involved.)

As p(x t ,y t |x f
t−1,j) = p(y t |x f

t−1,j)p(x t |y t ,x f
t−1,j), we can also write

πf
t (x t) ≈

∑
j

w̃ f
t ,j p(x t |y t ,x

f
t−1,j), w̃ f

t ,j ∝ w f
t−1,j p(y t |x f

t−1,j)

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 35 / 71

Sampling from this approximate filter density

∑
j w̃ f

t ,j p(x t |y t ,x f
t−1,j) is a mixture. To sample from it, we can choose

first a mixture component (with probabilities given by the weights). If
component j is chosen, we propagate x f

t−1,j using p(x t |y t ,x f
t−1,j). That

is we modify the true dynamics (given by m(x t |x f
t−1)) in order to steer

the particle towards the new observation.

Then w f
t ,j = 1

N , i.e no weighting of filter particles needed. But choosing
a mixture component is equivalent to resampling the filter particles at
time t − 1. The only difference to the standard particle filter is that
weights are now proportional to p(y t |x f

t−1,j) instead of p(y t |x
p
t ,j). The

gain is substantial only if the dynamics forgets initial condition quickly.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 36 / 71

Exact sampling for nonlinear dynamics

Exact sampling is possible if m(x t |x t−1) = N (M(x t−1),Q) and if
h(y t |x t) = N (y t ; Hx t ,R). By the same computation as for the Kalman
filter

p(x t |y t ,x
f
t−1,j) = N (M(x f

t−1,j) + Kt (y t − HM(x f
t−1,i)),Q − KtHQ)

where Kt is the Kalman gain computed with Q as prediction
covariance. Moreover

p(y t |x f
t−1,j) = N (HM(x f

t−1,j),HQHT + R).

The update looks like an EnKF update, but the variances differ, and
there is a resampling step involved in selecting the particles at time
t − 1.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 37 / 71

Proposal distributions for propagation
If p(x t |x f

t−1,j ,y t) is not tractable, we can still steer the particle in the
propagation step towards the new observation y t using a “proposal
distribution” q(x t |x f

t−1,j ,y t) and correct by weighting:

x f
t ,j ∼ q(x t |x f

t−1,j ,y t), w f
t ,j ∝

m(x f
t ,j |x f

t−1,j)h(y t |x f
t ,j)

q(x f
t ,j |x f

t−1,j ,y t)

In addition, we can use the new observations y t also for selecting the
starting particle (i.e. the mixture component): If we use probabilties
rt−1,j(y t) instead of w f

t−1,j the weights at time t become

w f
t ,j ∝

w f
t−1,jm(x f

t ,j |x f
t−1,j)h(y t |x f

t ,j)

rt−1,j(y t)q(x f
t ,j |x f

t−1,j ,y t)

This idea is due to Pitt and Shephard who called it the “auxiliary
particle filter” (the index of the mixture is an auxiliary variable).

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 38 / 71

Does the auxiliary PF solve the problem of filter collapse?

One can show that the “optimal” auxiliary particle filter (in the sense of
minimzing the expected L2-distance from uniform weights) takes
q(x t |x f

t−1,j ,y t) = p(x t |x f
t−1,j ,y t) and then the weights are proportional

to p(y t |x f
t−1,j).

This remains true even if we propagate x f
t−1,j with a proposal that uses

also the other particles (x f
t−1,i ; i 6= j)

Van Leeuwen suggested to choose a target weight and then place the
filter particles such that the weight of all or most particles are equal to
the target weight. This is an appealing idea, but it means that the
distribution of the filter particles differs from the target. It seems difficult
to me to say anything about how large this error is.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 39 / 71

Bridging the Particle and the Ensemble Kalman filter

Can we combine the EnKF with a PF in such a way that the method
inherits robustness from the EnKF and the ability to deal with
non-Gaussian features in πp from the PF?

There are many proposals for such a combination. The EnKPF (Frei
and K., 2013) applies Bayes formula in two steps

πp(x)
EnKF−→ πf ,γ(x) ∝ πp(x)h(y |x)γ

PF−→ πf (x) ∝ πf ,γ(x)h(y |x)1−γ .

This interpolates continuously between PF (γ = 0) and EnKF (γ = 1).

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 40 / 71

Implementing the EnKPF

Both steps of the EnKPF can be done exactly. For the first step we
need to give another interpretation of the EnKF. Remember the update
for the stochastic EnKF:

x f
i = xp

i + K̂ (y − Hxp
i − εi), εi ∼ N (0,R)

This means that x f
i ∼ N (xp

i + K̂ (y − Hxp
i), K̂ RK̂ T), i.e. the filter

ensemble is a balanced sample from

πf ,EnKF =
1
N

N∑
j=1

N (xp
i + K̂ (y − Hxp

i), K̂ RK̂ T)

If we do a partial update with h(y |x)γ ∝ N (Hx ,R/γ), the same
formula holds for πf ,γ provided we compute the Kalman gain with R/γ
(i.e. with less weight on the observation).

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 41 / 71

Implementing the EnKPF, ctd.

Using Bayes formula, one can show that the second step gives a
another Gaussian mixture:

πf =
N∑

j=1

wγ,jN (µγ,j , P̂γ)

(I skip the formulae for wγ,j , µγ,j , P̂γ)

We obtain the filter ensemble by drawing from this mixture. Choosing
the mixture component is like resampling, so the same mixture
component can be chosen several times. But even then no two filter
particles are the same. γ should be such that sufficiently many mixture
components are chosen at least once.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 42 / 71

Illustration of EnKPF

●

●

●

●

●

Prediction

●

EnKF mixture

●

PF mixture

●

Update

●

●

●

●
● ●

enkf
“

pf(1 ≠ “)

Resample

xt≠1 æ xt

xt æ xt+1

1

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 43 / 71

Single update for bimodal prior I

Left: EnKF. Right: EnKPF with γ s. th. diversity ≈ 40%.
Dots: Prior sample, Dotted: Contours of the Gaussian mixture from
which the filter ensemble will be drawn.

x1

x2

−5 0 5

−
2

−
1

0
1

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

x1

x2

−5 0 5
−

2
−

1
0

1
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 44 / 71

Single update for bimodal prior II

As before, but with observation leading to a bimodal posterior.

x1

x2

−4 0 2 4 6 8 10

−
2

−
1

0
1

2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

x1
x2

−4 0 2 4 6 8 10
−

2
−

1
0

1
2

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 45 / 71

1 Introduction

2 Basics about State Space Models and Filtering

3 Breakdown and Modifications of PF and EnKF

4 Localization

5 Filtering in Numerical Weather Prediction

6 Smoothing

7 Parameter estimation

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 46 / 71

Localization of filter updates

In many applications, components of x and y are related to positions
in space. Then assume that H is local (its entries are zero unless
locations are close) and that R is diagonal.

Then intuitively, the update of each component of x should depend
only on components of y that are close, and each component of y
should influence only the update of components of x close-by. This is
also necessary for efficient computation (parallelization).

This is easier to achieve for EnKF than for PF. I discuss EnKF first.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 47 / 71

Localization of EnKF

Covariance tapering does not imply that updates are local. Even if
HPpHT + R is sparse, its inverse is usually dense. Then also the
Kalman gain is dense.

Localization can be enforced by updating each component of x once,
using only observations nearby, or by assimilating each component of
y once, updating only components of y nearby. In practice, both
methods seem to give similar results. The first method is prefered
since the available observations can change at each iteration.

For both methods, care is needed to ensure that the update does not
create artificial discontinuities in the filter particles. This can be done.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 48 / 71

Localization of PF

For the PF (and any other method that uses resampling), the problem
of artificial discontinuities in the filter particles is more severe: Unless
the resampling probabilities are the same at all locations (which
contradicts localization), there are locations next to each other where
at least one filter particle originates from different prediction particles.

You can reduce this problem to some extent by permuting the indices
of the particles and by coupling the resampling at neighboring
locations.

For the EnKPF we have found a good solution (we believe) for
enforcing locality, but only when we use each observation component
once.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 49 / 71

1 Introduction

2 Basics about State Space Models and Filtering

3 Breakdown and Modifications of PF and EnKF

4 Localization

5 Filtering in Numerical Weather Prediction

6 Smoothing

7 Parameter estimation

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 50 / 71

Filtering in the setup used by MeteoSwiss

Sylvain Robert and I tested a localized EnKPF in a high resolution
numerical weather prediction model (COSMO 2). This is a particular
challenge since the complexity of the code limits the methods we can
use for filtering.

We don’t have access to the whole vectors y and xp
i . The system

updates the state variables in non-overlapping blocks and the result of
the assimilation must be in the form of a N × N matrix W (where
N = 40) for each block such that

X f = X pW

Here X p = (xp
1|x

p
2|...|x

p
N) where each xp

j contains the components of
the state in that block. At the center of the block, the particles x f

j are
used whereas for other grid points the weight matrices are interpolated
and then used for updating.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 51 / 71

Input for the update

In order to compute the a matrix W , we are given

(H∆X p)T R−1(y − Hx̄p)

where ∆X p = (xp
1 − x̄p|...|xp

N − x̄p) and the spectral decomposition of
the matrix

(H∆X p)T R−1(H∆xp).

First we had to adapt the EnKPF so that it can be computed with these
inputs.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 52 / 71

Illustration of EnKF update at one particular time

The plot shows the values W11 and W12 in the update formula

x f
1 − x̄ f = W11(xp

1 − x̄p) + W12(xp
2 − x̄p) +

for all locations.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 53 / 71

Illustration of EnKPF update at the same time

Same plot for the EnKPF:

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 54 / 71

1 Introduction

2 Basics about State Space Models and Filtering

3 Breakdown and Modifications of PF and EnKF

4 Localization

5 Filtering in Numerical Weather Prediction

6 Smoothing

7 Parameter estimation

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 55 / 71

Overview of smoothing

Smoothing means to estimate the state at some/all times before (or
equal to) t , using all observations up to time t . I will discuss ensemble
methods where the distribution of X u:s given Y 1:t = y1:t is
approximated by a (possibbly weighted) sample (x t

s:u,1, ..., x
t
s:u,N) for

0 ≤ s ≤ u ≤ t . So the superscript tells which observations are
available, subscripts give time points of states to be estimated and the
particle number.

There are 3 main cases:
Marginal smoothing: s = u < t ;
Fixed lag smoothing: s = t − L,u = t ;
Full smoothing:s = 0,u = t .

Full smoothing also solves the other two problems, but the other two
might be easier to do. There are many methods, I will only mention the
simplest ones.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 56 / 71

Full smoothing by extending the state space

Define an extended state at time t by Z t = X 0:t . (Z t ,Y t) is still a state
space model: For the dynamics, we generate X t by the original model
and attach it to Z t , and the observation Y t depends only on the last
component of Z t .

Applying the particle filter to this new state gives the following
algorithm:

Propagate: x t
0:t−1,i = x t−1

0:t−1,i , x t
t ,i ∼ m(x t |x t−1

t−1,i).

Reweight: w t
i ∝ h(y t |x t

t ,i).

Resample: Transform the weighted sample (x t
0:t ,i ,w

t
i) into an

unweighted sample.

Problems: Storage and sample depletion. The number of different
particles x t

s,i at a fixed time s can only decrease if t increases. It can
work well for fixed lag smoothing when the particle filter works.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 57 / 71

Forward filtering, backward smoothing

This is based on the fact, that conditionally on Y 1:t , X 0:t is a time
inhomogeneous Markov chain with backward transition densities

p(xs|xs+1,y1:t) = p(xs|xs+1,y1:s) ∝ m(xs+1|xs)πf
s(xs)

Hence if we have stored the particle filter approximations, we can draw
one full smoothing particle by the following algorithm:

Choose x t
t = x f

t ,j with probability w f
t ,j

For s = t − 1, t − 2, ...,0 choose x t
s = x f

s,j with probability
proportional to m(x t

s+1|x
f
s,j)w

f
s,j

One draw from the full smoothing density has complexity O(tN)
because in the second step we need to normalize the weights. Hence
constructing a smoothing ensemble of size N has complexity O(tN2).

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 58 / 71

Marginal forward-backward smoothing

The result from the previous slide implies

p(xs|y1:t) =

∫
p(xs|xs+1,y1:s)︸ ︷︷ ︸
∝m(xs+1|xs)πf

s(xs)

p(xs+1|y1:t)dxs+1

Hence we can obtain a weighted marginal smoothing ensemble that
has the same particles as the filter ensemble, but different weights:

w t
t ,i = w f

t ,i ; w t
s,i =

N∑
j=1

w t
s+1,j

m(x f
s+1,j |x f

s,i)w
f
s,i∑

k m(x f
s+1,j |x f

s,k)w f
s,k

This avoids the Monte Carlo error in the backward step without
increasing the complexity.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 59 / 71

Other smoothers

A different particle smoother is based on the so-called two-filter
formula. It combines two particle filters, one forward and one backward
in time.

Both forward-backward and two-filter smoothers can be modified to
have O(tN) complexity, see the references in the review by Paul
Fearnhead and myself.

Finally, there are Ensemble Kalman smoothers based on either
extending the state or on forward-backward Kalman filter recursions.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 60 / 71

1 Introduction

2 Basics about State Space Models and Filtering

3 Breakdown and Modifications of PF and EnKF

4 Localization

5 Filtering in Numerical Weather Prediction

6 Smoothing

7 Parameter estimation

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 61 / 71

Parameter estimation: Basics

We discuss the estimation of static parameters θ (λ in Remus’
notation) that are present in the state density m and/or the observation
density h.

The simplest methods include θ in the state, but this often does not
use the information in the data efficiently. It has however the
advantage that it is easily updated if new data arrive.

When parameter are estimated once all data are available, then
statisticians prefer to use either maximum likelihood or Bayesian
methods.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 62 / 71

Maximum likelihood and Bayesian estimation

The maximum likelihood estimator is defined as

arg max
θ

pθ(y1:t)

Bayesian methods put a prior p0 on θ and draw samples from the
posterior

p(θ|y1:T) ∝ p0(θ)pθ(y1:T)

The basic difficulty for both methods is that the likelihood pθ(y1:t) is
intractable (it is a high-dimensional integral). Maximum likelihood
applies stochastic versions of the EM
(Expectation-Maximization)-algorithm, Bayesian methods so-called
Particle MCMC (Markov chain Monte Carlo).

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 63 / 71

Parameter uncertainty in filtering

Bayesian methods have the advantage that uncertainty about the
parameter can be taken into account in filtering or prediction by
integrating over the unknown parameter:

πf
t =

∫
p(x t |y1:t , θ)p(θ|y1:t)dθ =

∫
p(x t , θ|y1:t)dθ

and similarly for πp
t . If one samples jointly the state and the parameter,

this integral is trivial.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 64 / 71

Parameters included in the state: PF

The easiest method is to include θ as a deterministic component of the
state. Then we initialize the filter with θf ,j

0 ∼ p0(θ)dθ and the update
becomes

θp
t ,j = θf

t−1,j , xp
t ,j ∼ mθf

t−1,j
(x |x f

t−1,j)

The particle filter degenerates quickly because the diversity of the
θ-component cannot be recovered in the propagation step. One can
avoid this by adding noise to θf

t ,j , preferably combined with shrinkage
to the mean. But variance of the noise must go to zero in order that
(θf ,j

t) approximates the posterior p(θ|y1:t).

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 65 / 71

Parameters included in the state: EnKF

For parameters θ in the transition density m, the EnKF obtains
information about θ through correlations of θ and the state in the
prediction distribution. This can be weak compared to information in
the likelihood.

For measurement equations of the form y = H(x , θ) +N (0,R) with
known R, information is obtained through correlations of θ with H(x , θ).

When the error covariance R depends on θ, a modification of the EnKF
is needed (Frei and K., 2013).

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 66 / 71

The likelihood pθ(y1:t)

The joint density of both the states x0:t and the observations y1:t
available can be written down:

pθ(x0:t ,y1:t) = pθ(x0)
t∏

s=1

mθ(xs|xs−1)gθ(ys|xs)

The joint density of the observations alone is obtained by integrating
the states out:

pθ(y1:t) =

∫
pθ(x0:t ,y1:t)dx0:t

The integral can be approximated by a 2nd-order Taylor approximatio
of log pθ(x0:t ,y1:t) around its maximum. We chose this approach in the
project on the abundance of fish mentioned at the beginning.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 67 / 71

The likelihood pθ(y1:t), ctd.

A different approach starts with the identity

pθ(y1:t) =
t∏

s=1

pθ(ys|y1:s−1)

The factors on the right are the normalizing constants in Bayes formula
for the update step

πf
θ,s(xs) =

πp
θ,s(xs)hθ(ys|xs)

pθ(ys|y1:s−1)

It can be estimated by running a particle filter with parameter θ and
computing the average of the weights hθ(ys|x

p
s,i).

A basic result shows that this estimate is unbiased for every fixed y1:T
and every fixed N, i.e. on average over all possible particles the
estimated likelihood is equal to the true likelihood.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 68 / 71

Particle MCMC for state space models

The standard Metropolis-Hastings algorithm to sample from the
posterior p(θ|y1:T) runs as follows: Given the current value θ, propose
a new value

θ′ ∼ q(θ′|θ)dθ′

and accept it with probability

a(θ, θ′) = min

(
1,

p0(θ′)pθ′(y1:T)q(θ|θ′)
p0(θ)pθ(y1:T)q(θ′|θ)

)
Otherwise keep the current value θ.

As the likelihood is not available, one runs a particle filter with
parameter θ′, computes the unbiased estimate from the previous slide
and plugs it into the formula for the acceptance probability.

Andrieu & Roberts (2009), Andrieu et al. (2010) have shown that the
stationary distribution of this Markov chain is still the exact posterior.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 69 / 71

Summary and Conclusion

State space models provide a unified framework for state
prediction and filtering in complex systems.
In many applications, the only way to approximate prediction and
filtering distributions is by Monte Carlo.
Monte Carlo methods iterate between propagation and updating.
The update step is more difficult, with particle filter and ensemble
Kalman filter as the two basic methods.
Ensemble Kalman filter works well also in high dimensions,
provided we localize the update.
Particle filters are more general, but they degenerate quickly in
high dimensions. Modifications to improve the performance of
particle filters and hybrid methods have been proposed, but it is
still open whether they are able to beat the EnKF in geophysical
applications.
Smoothing algorithms and estimation of static parameters are
other areas of active research.

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 70 / 71

Thank you for your attention!

Hans R. Künsch (ETH Zurich) Particle Filters Geilo 2019 71 / 71

	Introduction
	Basics about State Space Models and Filtering
	State space models
	Prediction, filtering, data assimilation
	Monte Carlo (Ensemble) filters

	Breakdown and Modifications of PF and EnKF
	EnKF: Covariance tapering
	Auxiliary and related particle filters
	The Ensemble Kalman Particle Filter

	Localization
	Filtering in Numerical Weather Prediction
	Smoothing
	Parameter estimation

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	anm1:

