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Plan for course 
Time  Topic 

Lecture 1 Introduction and motivating examples 

Elementary decision analysis and the value of information 

Multivariate statistical modeling, dependence, graphs 

Value of information analysis for dependent models 

Lecture 2 Re-cap of VOI and statistical dependence 

Spatial statistics, spatial design of experiments 

Value of information analysis in spatial decision situations 

Examples of value of information analysis in Earth sciences 

Lecture 3 Computational aspects of VOI analysis, approximate calculations 

Sequential information gathering 

Examples from Earth sciences 

Every day: Small exercises. 



Bayesian model 

• All the currently available information is contained in the 
prior model for the variables: 
 

 
 

• New data (and the data gathering scheme) is represented 
by a likelihood model: 
 

 
 
• If we collect data, the model is updated to the posterior, 

conditional on the new observations: 
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Bayesian updating 

 
• What data is valuable?  

 
• Study the expected effect of data, 

before it is collected.  
 

• We gather data not only to reduce 
uncertainty, but to make better 
decisions. We have a goal, a clear 
question we want to answer.  
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 |p x y



Decision analysis 

 1,..., Na aa

 1,..., nx xx

 ,v x a

• Uncertain variables: 
 
 
• Alternatives (Where? How? When?) 
 
• Value function is revenues, subtracted costs. 
 
 
• Risk neutral decision maker will maximize expected value: 
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Value of information (VOI) 

Prior value: 

Posterior value: 

   VOI PoV PV y y

x

a

- Uncertainties 
 
 

- Alternatives 

y - Data 

 ,v x a - Value function 

VOI    =   Expected posterior value    –   Prior value 

  max ( , )PV vE a A x a
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Information gathering 
.  

  Perfect Imperfect 

Total Exact observations are gathered for all 
locations.  

Noisy observations are gathered for all 
locations. 

Partial Exact observations are gathered at 
some locations.  

Noisy observations are gathered at some 
locations 

y x  y x 

,  subsety x ,  subset y x 



Markov chains   

Markov chains are special graphs, defined by 
initial probabilities and transition matrices. 
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Avalanche decisions and sensors 
Suppose that parts along a road are at risk of avalanche.  
- One can remove risk by clearing roads, at a cost. 
- Otherwise, the repair cost depends on the unknown risk class: 1) low, 2) high. 

 
Data, sensor at a particular location, can help classify the risk class and hence improve 
the decisions made regarding cleaning / wait and see. 
 

 
 



VOI workflow 

• Clear entire road up front (fixed 
cost), or wait and see (uncertain 
cost at each location).  

• Gather information by sensor at 
one location, perfect information 
about risk class at that location.  

• Model is a Markov chain with 
increasing probability of high risk 
for later indeces (altitude). 

• VOI analysis done by Markov chain 
calculations. Conducted for all 
possible sensor locations. 
 



Avalanche decisions - risk analysis 
n=50 identified locations along railroad track, at increasing altitude and risk of avalanche.  
One can remove risk entirely by cost 100 000. 
If it is not removed, the repair cost, at each location, depends on the unknown risk class: 
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Decision maker must choose whether to  
i) clean tracks up front, with fixed price. 
ii) wait and see, with the uncertain price at each location.  
 
The decision is based on the minimization of expected costs.  
 
Prior value: 

Clean up front Expected value when 
wait and see.  



Markovian model for risk of avalanche 
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Risk tends to start in lower class (1), and then move to higher class (2).  
If risk class 2 is reached, it will stay there until location 50 (absorbing state).  

Absorbing! 



Results – marginals 
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Sensor – perfect risk information at one 
location 

 
 

 
- Install a sensor at one location, getting perfect information at that node.  
- Compute conditional probabilities.  
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Results – conditionals (forward) 
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Results – conditionals (backward) 
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Results – conditional probabilities 
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Learning risk of avalanche 

 
 

 
- Plan to install a sensor at one location, getting perfect information at that location.  

 

- Compute the posterior value, with sensor location at one location. 
Compute the VOI. 

- What is the optimal sensor location, if the goal is to improve risk decisions? 

 1, ,50j



Results – VOI 
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Best location near j=30.  
The VOI is about 13000 



Hands on - Avalanche risk 
n=50 identified locations along railroad track, at risk of avalanche.  
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Decision maker must choose whether to  
i) clean tracks up front, with fixed price. 
ii) wait and see, with the uncertain price.  
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Is the VOI sensitive to C2=5000 (4000, 6000) ? 
Is the optimal sensor location sensitive to C2=5000 (4000, 6000) ? 
Implement in Python, R or Matlab.  



Gaussian distribution and VOI 

Main topic today is computing the VOI in spatial Gaussian linear models.  
 - The spatial random variables are assumed to be Gaussian distributed 
 - Make good spatial designs. 
 - The optimal design depends on the model and the decision situation. 
 
Gaussian distribution is very common and analytical properties are available. 



Gaussian profit 
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Gaussian, m=2, r=3 

Uncertain profit of a project is Gaussian distributed.  



VOI for Gaussian project profits 

   PosteriorValue PriorValueVOI x x 

Uncertain project profit is Gaussian distributed.  
Invest or not? 
The decision maker asks a clairvoyant for perfect 
information, if the VOI is larger than her price. 
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Posterior value of perfect information 
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Result: 
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VOI for Gaussian 

       max 0,m mVOI x m r m
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Result: 
Gaussian pdf Gaussian cdf 

The analytical form facilitates computing, and eases the 
study of VOI properties as a function of the parameters.  



VOI for Gaussian 
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Result: 
Gaussian pdf Gaussian cdf 

i) The VOI is largest with mean at 0, most difficult to make decision. 
 

ii)  If 
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More uncertain -> information more valuable. 



Multivariate Gaussian and VOI 
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Standard bivariate 
Gaussian: 



Two-project example - Gaussian 

Two correlated projects 
with uncertain profits. 
 
Decision maker considers 
investing in project(s).  
 
The prior distribution is 
the bivariate Gaussian. 



Gaussian projects example 

• Alternatives 
• Do not invest in project 1 (a1=0)    -   Invest in project 1 (a1=1) 
• Do not invest in project 2 (a2=0)    -   Invest in project 1 (a2=1) 
• Decision maker is free to select both, if profitable: Four sets of 

alternatives.  

• Uncertainty (random variable) 
• Profits are bivariate Gaussian.  
      Assume mean 0, variance 1 and fixed correlation.   

 
• Value decouples to sum of profits, if positive. 

• Information gathering  
• Report can be written about one project (assume perfect information).  
• Report can be written about both projects (assume imperfect information). 



Gaussian projects example  
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Gaussian projects example  
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Perfect information about 1 project  

   

 

 

1

1

1 1 1

2 1 1

0,1

|

|

y x

p x N

E x x x

E x x x









   

     

 

2

1 1 2 1

1 1 1 1 1 1 1

0 0

| 0, | 1

1

2

Var x x Var x x

PoV x x p x dx x p x dx









 

  

 




 

Get information 
about second project 
because of 
correlation! 



Imperfect information, both projects 
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Gaussian projects results 
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Insight from Gaussian projects 

Dependence matters – the more correlation, the larger VOI.  
The relative increase is very clear for partial information. It is also larger when there is 
more measurement noise. (With perfect total information, dependence does not 
matter.) 
 
Decision maker must compare the VOI with the price of information, or a budget. 
VOI is often used to compare different possible designs.  



Exercise : Two Gaussian projects 
 
Consider the bivariate Gaussian projects example, with prior mean 0 and 
variance 1, correlation 0.7 (and 0.1) and measurement noise st dev 1. 
 
- Study the decision regions for no testing, partial perfect or total imperfect 

testing:  
 

Decision regions  are visual plots,  
with the price of one perfect on the x-axis,  
and the price of two imperfect on the y-axis. 
 
 

  1,2 1,2, 1 1,arg max , ,0imp perfVOI P VOI P 



Joint Gaussian pdf – spatial field 
 
Gaussian process (for some discretization of space): 
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For a Gaussian process, in a spatial application, the covariance entries are 
formed in a particular way. 



Spatial covariance functions 
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Model Covariance 

Exponential 

Matern 3/2 

Cauchy-
type 

Gaussian 
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Model for data 

F
Design 
matrix: 
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Gaussian posterior model 
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Norwegian wood - forestry example 
.  

Where to put survey lines for timber volumes  information? 
Typically partial, imperfect information. 

Farmer must decide whether to harvest 
forest, or not. There is uncertainty about 
timber profits over the spatial domain. 
 
Another decision is whether to collect 
data before making these decisions.  
If so, how and where should data be 
gathered. 



Norwegian wood - posterior 
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Design 
matrix: 

This is Kriging prediction and associated variance. 



Norwegian wood – posterior results 
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Norwegian wood –  information 

Data gathering schemes / design / active learning  
Can be based on different criteria : 
• Geometric criterion (space-filling design). 

o Minimize average distance between data 
locations. 

o Set a threshold on minimum distance to nearest 
data location.  

     Challenging to compare various data accuracies. 
• Maximum variance reduction 
• Maximum entropy 
• Prediction error / Excursion sets  
• Value of information (VOI) 

VOI is based on decision situation! 
Others are not material – not tied to decision situation. 



Variance reduction 

Expected variance reduction: 
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The posterior variance does not depend on the data, only the data design. 



Variance reduction (Kriging) 

Overall variance 
reduction is larger for 
the random design. 

        1 1
2 2,t t t tp N  

 

    x | y F F F I y F F F F I F     



Entropy (Shannon) 

( ) ( )log ( )Ent p p d x x x x
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Expected mutual information:  



Entropy of a Gaussian 

( ) ( )log ( )Ent p p d x x x x
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Since the entropy is the log determinant of the covariance matrix, the 
posterior entropy will not depend on the data, only the data design. 



VOI - Pyramid of conditions 

Pyramid of conditions  - VOI is different from other information criteria (entropy, 
variance, etc.) 
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Decoupling – values are sums 
.  

Assumption: Decision Flexibility Assumption: Value Function 

Low decision flexibility; 
Decoupled value 

Alternatives are easily 
enumerated  

Total value is a sum of value at every unit 

High decision flexibility; 
Decoupled value 

None  Total value is a sum of value at every unit 

Low decision flexibility; 
Coupled value 

Alternatives are easily 
enumerated  

None 

High decision flexibility; 
Coupled value 

None None  
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Profit is sum of timber volumes from units. 



Low versus high decision flexibility 
.  

High flexibility:  
Farmer can select individual 
forest units. 

Low flexibility:  
Farmer must select all forest 
units, or none. 



Decoupled versus coupled value 
.  

Value decouples to sum over units. 

Value involves complex coupling of 
drilling strategies, and reservoir 

properties. 

Petroleum company must decide how to 
produce a reservoir.  

Farmer must decide whether to harvest at 
forest units, or not.  
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Computation - Formula for VOI 

       max , |PoV E v p d  a Ay x a y y y

Computations : 
• Easier with low decision flexibility ( less alternatives).  
• Easier if value decouples (sums or integrals split). 
• Easier for perfect, total, information (upper bound on VOI).  
• Sometimes analytical solutions (GAUSSIAN).  
• Otherwise approximations and Monte Carlo. 



Conditioning – Gaussian models 
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Prediction, Kriging. 

- Conditional mean is linear in the data.  
- Data are Gaussian Linear combinations of Gaussian variables are Gaussian  
 



VOI – Gaussian models 
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Low flexibility:  
Must select all units, or none. 

   ,z z  standard Gaussian density and cumulative function 
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VOI – analytical expression 
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VOI – analytical expression 
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Design 
.  

Where to put survey lines for timber volumes  information? 
Typically partial, imperfect information. 

Design matrix: 
Picks the measurement locations for a 
partial test.  
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Total test. 

Example of 
imperfect test. 



.  
Results - Forestry example 

Total: all cells. Partial: Every cell along center lines. Aggregated partial: sums along center lines. 

(Results are normalized for area). 



.  
Insight in VOI from this example 

• Total test does not necessarily give much higher VOI than a partial test. It depends on 
the spatial design of experiment as well as the prior model (mean and dependence). 
 

• VOI increases with larger dependence in spatial uncertainties.  
 

• VOI is largest when we are most indifferent in prior (mean near 0 and large prior 
uncertainty. 
 

• VOI increases with higher accuracy of measurements.  
 



I love rock and ore – mining example 

What is the value of this 
additional information? 

Is mining profitable? 



VOI workflow 

• Low decision flexibility. De-coupled 
value function. Some of all units. 

• Gather information by XRF or 
XMET in boreholes. No 
opportunities for adaptive testing. 

• Model is a spatial Gaussian 
process.  

• VOI analysis done by exact, 
Gaussian, computations. 
 



Decision situation and data 

Mining blocks. Some waste 
rock. Some high-grade. 

Planned 
boreholes. 



Information gathering 

Planned 
boreholes. 

• Total test : 265 measurements in 21 new boreholes. 
• Partial test: Drilling and sampling data only in a subset of boreholes.  
• Perfect testing (XRF: done in lab). Imperfect testing (XMET: handheld meter). 



Prior model 



Model 



Prior and likelihood model 
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VOI 
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Analytical solution under the Gaussian modeling assumptions. 

Weights set from block model(waste or ore). 



VOI : Decision regions XRF,XMET. 



VOI : Decision regions, partial data. 



.  Take home from this exercise: 

• Information connected to partial perfect testing can be less/more than total 
imperfect testing. 

• Information criteria depend on design and data accuracy. 
• Entropy appears to like perfect information. 
• VOI can be connected with decisions and prices (not so easy for other criteria). 

 
 
 


