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Introduction Data Driven Optimization

In 2017 an industry consortium with a focus on “Integrated System Approach to Petroleum 
Production” (ISAPP) initiated a benchmark project on “field development optimization under 
uncertainty”. 50 equi-probable geological realizations of a North sea like reservoir were 
provided to represent subsurface uncertainty.

ISAPP (Integrated Systems Approach to Petroleum Production) is a joint project of 
TNO, Delft University of Technology, ENI, Equinor and Petrobras.

Standardized Well Control Optimization for given Field Development Plan

Challenge 1: Maximize Net Present Value for well control rate problem under uncertainty
Pre-evaluation: Study ensemble representation
• Correlation: Injection – Production
• Voidage replacement gap

Conclude: Optimal control parameterization
• Open/Shut wells in upper/lower formation (discrete)
• Production constraints: Max. injection and production
• Shut perforation section when impact on NPV is 

negative 

Objective: Optimize well control and compare 
results against an industry best-practice reactive 
control solutions over 20 year production period. 
Measure: Apply an off-set distribution to 
measure the difference between the optimized 
control (c) and the reference solution for every 
realization (i) at different time steps (t)

Parameterization: Perforation sections all wells. 
Control setting: shut/open for each interval CPn
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Standardized Approach: Optimize control settings 
based on a sequence of optimization steps.

Results for Well Control Optimization

Optimization
Each control interval is 
optimized separately.

Robustness:
Verify solution candidates for each control 
interval against all 50 realizations.
Negative NPV at start accounts for CAPEX.

Performance:
Candidate solutions outperform reference 
solutions at all control steps

Number of candidate sets
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Selection of representative realizations:

Competition:
Domain knowledge supported by data 
driven analytics outperforms brute force. 
Brute force is possible, but we can do better.

Lesson Learned

Automation:
Standardized workflow designs deliver a 
high automation potential. 
High performance computing enables 
optimization under uncertainty workflows. Worse Better than reference case

NPVOff
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≈ 2%

For all possible design configurations � the risk measure should ideally deliver the same 
outcome for the full ensemble calculation ��(�, �) as for the selected subset of 
realizations ��(�, �). 
In an optimization process the correlation � between the full ensemble objective ��(�, �)
and the corresponding reduced order ensemble objective ��(�, �) will be maximized for 
an arbitrarily sampled solution space �.
For a predefined dimension of the reduced order set, an optimization process is designed to 
select an optimal set of realizations out of the full ensemble

	max
�
� �� �, � ; ��(�, �) 		

Solution design:

In a sensitivity scan, control parameters are adjusted at different timesteps one-at-a-time 
with an impact on the economic return 
measured by NPV.

Economic outcomes ��(�, �) shown for the 
sensitivity scan are calculated for a selected subset of realizations �. A performance 
ranking of control parameters with respect to control type and timestep is used to prioritize 
control parameter settings for a solution design. Starting from a baseline setting, the solution 
is constructed by sequentially modifying control parameter settings based on their ranking.
The stability of a solution is tested by repeating sensitivity scans and constructing solutions 
for alternative sets of realizations with increasing ensemble size, e.g., 2,3,4, … realizations. 

� Ensemble Realizations Size

1 ���, ��� 2

2 ���, ���, ���, ���, ��� 3+2

3 ���, ���, ���, ���, ���, ���, ���, ���, ��� 4+5

For the first ensemble two realizations are 
selected. The second ensemble is 
constructed by 3 new realizations plus two 
realizations from the first ensemble, etc. 

Simulate random control designs 
on full-ensemble

Select n realizations 
Corr. mean of sub-/ full-ensemble

Simulate EDM on sub-ensemble

Verify solution on full ensemble

Convergence?

Result Presentation

Sensitivity analysis based on all 
selected realizations

Optimize solution design

n:=n+1

store all 
simulations
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Choose optimization interval
 CPn

Select n realizations 
sub-ensemble represents CVaR

Simulate EDM on sub-ensemble

Verify solution on full ensemble

Next interval?

Result Presentation

Sensitivity analysis and control 
parameter reduction

Optimize solution design

n:=n+1
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Standardized Approach:
1) A large data set of random control design scenarios 
� are simulated for all realization �. A subset of n
realizations is selected based on an optimized 
correlation performance between the sub- and full-
ensemble

2) Control scenarios based on a pre-defined 
experimental design matrix (EDM) are simulated on 
all new selected realizations. For re-usage in next 
iteration sub-ensembles, simulation outputs of all 
realizations are stored. In the optimization step 
control settings with a positive impact on the 
economic outcome are ranked and combined.

3) Solution scenarios are verified on the full-ensemble

Results

For this work we run 200 randomly 
sampled well control scenarios against 
50 realizations, i.e., 10.000 full field 
simulation runs. The reduced order model 
is constructed by optimizing the 
correlation performance between the full 
ensemble and the selected realizations 
based on 200 well control scenarios.
Over three iterations we rerun the 
workflow with 2, 5 and 9 realizations for 
constructing an optimal and robust well 
control design. The data-driven 
optimization solution outperforms the 
sequential schedule optimization result 
for both, mean NPV as well as for the 
offset measure.

Figure: (left) basecase (yellow), reactive strategy (pink), 
sequential schedule optimization (red) and  data driven 
optimization (blue). (right) NPV Offset distributions for 
sequential schedule optimization (red) and data driven 
optimization (blue) results.

Figure: Sensitivity scan of well control 
parameters at different time steps with 
negative (blue) to positive (red) impact on NPV

Figure: Optimized well 
control design over an 
increasing number of 
realizations (orange line). 
Reference solutions of the 
previous approach are 
shown as blue dots.
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