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Abstract
Generalized linear mixed models (GLMM) are addressed for inference and prediction in a wide range of different appli-

cations providing a powerful scientific tool for the researchers and analysts coming from different fields. At the same time
more sources of data are becoming available introducing a variety of hypothetical explanatory variables for these models to
be considered. Estimation of posterior model probabilities and selection of an optimal model is thus becoming crucial. We
suggest a novel mode jumping MCMC procedure for Bayesian model averaging and model selection in GLMM.

Introduction
In this study we address variable selection in GLMM addressed in the Bayesian setting. GLMM models

allow to carry out detailed modeling in terms of both linking reasonably chosen responses and explanatory
variables via a proper link function and incorporating the unexplained variability and dependence structure
between the observations via random effects. Being one of the most powerful modeling tools in modern
statistical science GLMM models have proven to be efficient in numerous applications from banking to as-
trophysics and genetics [2]. The posterior distribution of the models can be viewed as a relevant measure
for the model evidence, based on the observed data. The number of models to select from is exponential
in the number of candidate variables, moreover the search space in this context is sparse and non-concave.
Hence efficient search algorithms have to be adopted for evaluating the posterior distribution of models within
a reasonable amount of time. We introduce efficient mode jumping MCMC algorithm for calculating and
maximizing posterior probabilities of the GLMM models.

Model and Inference
Generalized linear mixed models consist of a response Yt coming from the exponential family distribution, P

variables Xti for observations t ∈ {1, ..., T} and latent indicators γi ∈ {0, 1}, i ∈ {1, ..., P} defining if variable
Xti is included into the model (γi = 1) or not (γi = 0). The unexplained variability of the responses and the
correlation structure between them are addressed via random effects δt with a specified parametric and sparse
covariance matrix structure. Conditioning on the random effect we model the dependence of the responses on
the explanatory variables via a proper link function g(⋅):

Yt∣µt ∼ f(y∣µt) (1)
g(µt) = β0 +∑

P
i=1 γiβiXti + δt (2)

δ = (δ1, ..., δT ) ∼ NT (0,Σb) . (3)

Here βi ∈ R, i ∈ {0, ..., P} are regression coefficients showing in which way variables influence the linear
predictor and Σb = Σb (ψ) ∈ RT ×RT is the covariance structure of the random effect. We put relevant priors
for the parameters of the model in order to make a fully Bayesian inference:

γi ∼ Binom(1, q) (4)
β∣γ ∼ NPγ(µβγ,Σβγ) (5)

ψ ∼ ϕ(ψ) (6)

where q is the prior probability of including a covariate into the model.
Let γ = (γ1, ...γP ), which uniquely defines a specific model. Then there are 2P different fixed models in the

space of models Ω. We would like to find a set of the best models of this sort with respect to a certain model
selection criterion - namely marginal posterior model probabilities (PMP) - p(γ∣y), where y is the observed
data. For the class of models addressed marginal likelihoods (MLIK) - p(y∣γ) are obtained by the INLA
approach [4] or other methods [3]. Then PMP can be found using Bayes formula and estimated by iterating
through the reasonable set of models V in the space of models Ω.

p(γ∣y) =
p(y∣γ)p(γ)

∑γ ′∈Ω p(y∣γ
′)p(γ′)

≈
I(γ ∈ V)p(y∣γ)p(γ)

∑γ ′∈V p(y∣γ′)p(γ′)
,V ⊆ Ω. (7)

In (7) only models with high MLIK give significant contributions and thus iterating through them when con-
structing V is vital. The problem seems to be pretty challenging, because of both the cardinality of the discrete
space Ω growing exponentially fast with respect to the number of variables and the fact that Ω is multimodal
in terms of MLIK. Furthermore, the modes are often sparsely located [2]. For any other important parameters
∆ the model averaged distribution within our notation becomes:

p(∆∣y) = ∑
γ∈Ω

p(∆∣γ,y)p(γ∣y) ≈ ∑
γ∈V

p(∆∣γ,y)p̃(γ∣y),V ⊆ Ω. (8)

Properties of the obtained in (7) - (8) estimators are also discussed in [2].

Figure 1: Illustration of locally optimized proposals (left) and MDS (multidimensional scaling) plot of the best 1024 models in
terms of PMP in the space of models for some epigenetic data (right).

Mode Jumping MCMC
Locally optimized proposals are suggested at frequency % of 2%-5% in order to increase the quality of pro-

posals and consequently both improve the acceptance ratio and increase the probability of escaping from local
optima (otherwise simple MCMC steps are performed). Assume χ∗ = (χ∗0 ,χ

∗
k
) where χ∗0 is generated ac-

cording to some large jump proposal. χ∗0 is modified to χ∗
k

through some optimization or simulation steps
in order to move towards a local mode. Finally, γ∗ is a randomized version of χ∗

k
such that irreducibility

of the Markov chain is not violated. The procedure is illustrated in Figure 1 where the backward sequence
γ∗ → χ0 → χk → γ, needed for calculating the acceptance probability, is included.

1: procedure MODE JUMPING STEP

2: χ∗0 ∼ ql(⋅∣γ) # make a large jump with kernel ql
3: χ∗k ∼ qo(⋅∣χ

∗
0) # perform local optimization with kernel qo

4: γ∗ ∼ qr(⋅∣χ∗k) # randomize around the mode with kernel qr
5: χ0 ∼ ql(⋅∣γ

∗) # make a reverse large jump with kernel ql
6: χk ∼ qo(⋅∣χ0) # perform local optimization with kernel qo
7: r ← rm(χ,γ;χ∗,γ∗) = min{1,

π(γ∗)qr(γ∣χk)
π(γ)qr(γ∗∣χ∗

k)
} # calculate acceptance probability

8: if Unif[0; 1] ≤ r then
9: γ ← γ∗ # accept the move to the proposed mode

10: end if
11: end procedure

Results
We apply the described algorithm further addressed as MJMCMC on the Protein Activity Data (88 covari-

ates) and compare its performance to some popular algorithms such as BAS and competing MCMC methods
(MC3, RS, and thinned RS) with no mode jumping [1, 2]. We also report BMA predictions based on MJM-
CMC for the NEO asteroids data.

Protein Activity Data
Bayesian linear regression with a g-prior T = 96 observations and P = 88 explanatory variables is applied.

Several approaches are compared on 20 replications with 1048576 models visited in each one.

Figure 2: Comparisons of the log marginal likelihood in the protein data of the top 100000 models (left) and boxplots of the
posterior mass captured (right) obtained by MJMCMC, BAS-eplogp, BAS-uniform, thinned version of Random Swap (RST), BAS
with Monte Carlo estimates of inclusion probabilities from the RST samples (BAS-RST-MC), and BAS renormalized estimates of
inclusion probabilities (BAS-RST-RM) from the RST samples.

BAS with both uniform and eplogp initial sampling probabilities perform rather poorly in comparison to other
methods, whilst BAS combined with approximations from RST as well as MJMCMC show the most promising
results. BAS with RM initial sampling probabilities usually manages to find models with the highest MLIK,
however MJMCMC in general captures by far higher posterior mass within the same amount of unique models
visited.

NEO Asteroids Data
The observations are whether asteroids are potentially hazardous objects (PHA) or not (Phocaea). Logistic

regression with an informative prior is applied. P = 20 different covariates describing objects are addressed.
64 objects are in the training set, 20720 - in the test set.

Subset Cardinality Accuracy FNR FPR
Ω 1048576 99.95656% 0.05670945% 0.01510117%
V 20005 99.95656% 0.05670945% 0.01510117%
V 10090 99.95656% 0.05670945% 0.01510117%
V 2512 99.80212% 0.05670945% 0.49594239%
V 412 99.46429% 0.04253813% 1.56110622%
V 80 99.19402% 0.02836276% 2.40271201%
V 4 90.00483% 0.04962427% 23.7651171%
V 1 82.83301% 0.07087675% 34.8839473%

Table 1: Comparison of BMA predictive performance (Accuracy, FDR, FNR) based on MJMCMC and full screening on the test set

The results show high predictive opportunities of BMA predictions based on MJMCMC training. MJMCMC
allows to avoid iterating through all 220 models to obtain full predictive power. Though as we continue de-
creasing the number of models in V, accuracy gradually drops.

Conclusions
• Novel MJMCMC approach for estimating posterior model probabilities and Bayesian model averaging

within GLMM and selection is introduced.

• MJMCMC incorporates the ideas of MCMC with possibility of large jumps combined with local optimizers
to generate smart proposals in the discrete space of models.

• EMJMCMC R-package is developed and available from the GitHub repository: http://aliaksah.
github.io/EMJMCMC2016 – simply scan the QR code on the top of the poster.

• The developed package gives a user high flexibility in the choice of methods to obtain marginal likelihoods
and model selection criteria within GLMM.

• Extensive parallel computing for both MCMC moves and local optimizers is available within the developed
package.

• Based on the obtained results, MJMCMC can be claimed as a rather competitive novel algorithm in terms
of the search quality, inference and predictions.

Forthcoming Research
In future it would be of an interest to extend the procedure to the level of selection of link functions, priors

and response distributions as well as to allow feature engineering. This is expected to provide new opportu-
nities in automation of model selection and thus expand capacity for addressing properly defined statistical
models within machine learning applications. It will also require even more accurate tuning of parameters of
the search introducing another important direction for further research.
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