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Artificial Neural Networks (ANNs) are increasingly successful at solving image analysis problems.
Image analysis is widely used in Fluid Mechanics when performing Particle Image Velocimetry (PIV),
and therefore it is natural to test the ability of ANNs to perform such tasks. We report for the first
time the use of Convolutional Neural Networks (CNNs) and Fully Connected Neural Networks (FC-
NNs) for performing end-to-end PIV. Realistic synthetic images are used for training the networks
and several test cases are used to assess the quality of each network predictions and compare them
with state-of-the-art PIV softwares. While the ANNs we present have slightly higher Root Mean
Square (RMS) error than state-of-the-art cross-correlation methods, they perform better near edges
and allow for higher spatial resolution than such methods.

Introduction
Experimental Fluid Mechanics relies on using image processing for measuring flow velocities. Par-
ticle Image Velocimetry (PIV) is one such method which usually relies on computing the cross-
correlation of a spatial window between two frames for finding a correlation peak, indicating the
most probable displacement of the flow. PIV algorithms have been refined and complexified with
time so that several correlation techniques can be used, subpixel accuracy can be achieved, and out-
liers can be automatically detected and interpolated.

On many aspects, the methods currently used for performing PIV rely on complex feature engi-
neered algorithms. Based on the trends observed in other branches of image processing, and in par-
ticular the increasing performance of ANNs, one can expect that well designed ANNs should become
better at performing PIV than the algorithms used today.

Image generation
Synthetic data are used to create arbitrarily big labeled training dataset and therefore issues common
with ANN training, such as overfitting, are avoided. A dataset used for training the ANNs is com-
posed of a collection of pairs of 32× 32 pixels images and their labels. Second order polynomials are
created for the u and v components of the velocity as:{

u(x, y) = U0 + J̄u · r̄ + r̄T · ¯̄Hu · r̄
v(x, y) = V0 + J̄v · r̄ + r̄T · ¯̄Hv · r̄

(1)

where the position of the point considered is r̄ = (x, y), (U0, V0) is the velocity at the centre of the
image, and the Jacobian and Hessian tensors of the velocity component i at the centre of the image
are J̄i and ¯̄Hi, respectively. U0, V0, J̄i and ¯̄Hi are randomly generated from the uniform distribution.
U0 and V0 are in the range ±4pixels/frame, Ji in the range ±0.05/frame, and Hi in the range
±0.001/pixels frame.

Once the random velocity field has been generated, a set of initial positions for the tracer particles
is drawn from a random uniform distribution. Those are advected as:

dx̄p
dt

= ū(x̄p(x̄0, t), t), (2)

with x̄p(x̄0, t) the position of the particle p initially at the position x̄0 after a time t. Equation (2) is
integrated using the Runge-Kutta 4 method for generating the particles positions in both frames of the
image pair.

Sufficiently small particles imaged by a camera form circular patterns known as Airy disks. The
central lobe of the Airy disks are normally well approximated by Gaussian bell curces:

I(x, y) = I0 exp

(
−(x− x0)2 − (y − y0)2

(1/8)d2
τ

)
, (3)

where I0 is the particle luminosity, dτ the effective particle diameter, and (x0, y0) the position of
the particle centre. I0 and dτ are random and drawn from a uniform distribution independantly for
each particle. As a final step a 1% Gaussian white noise is added to the images. Typical results are
presented in Fig. 1.

Figure 1: Example of a couple of synthetic images used for training the ANNs.

ANNs and PIV codes
The CNN used is composed of a single convolution layer featuring 512 kernels of size 16 × 16 pixels
and depth 2 applied with a stride of 8 pixels using zero padding. The sizes of the fully connected

layers are 8192, 4096, 2048 and 6 neurons going downwards in the network. The first three layers use
Rectified Linear Units (ReLUs) of slope 0.1 for negative x values. The last layer uses linear activation
function for producing the output prediction of the network. The whole network is trained using the
Adam optimizer. The cost function to be minimized is the absolute norm of the prediction error.

The FCNN has a total of 6 layers. The first five layers feature 4096 ReLUs, and the last layer has
6 linear units that are used to produce the network prediction. ReLUs have a slope 0.1 for negative
x values, the Adam optimizer is used to minimize the absolute norm of the prediction error and no
regularization is imposed on the network.

Comparisons were performed against LaVision, a market leading commercial code, and Hydro-
labPIV, an in-house PIV code developped at the University of Oslo. Traditional PIV codes were used
on extended images of size 128x128 pixels so that mutlipass can be applied. The velocity from the
center 32x32 subwindow was extracted for generating the predictions of the ANNs.

Results and conclusion
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Figure 2: Left: RMS of the velocity error estimates in the Translation test case. The vertical line indicates the maximum
value of the parameters selected when generating the pictures used for training the networks. Right: investigation of
the spatial resolution of each method, performed by assessing the quality of the predictions obtained on velocity fields
featuring a range of typical autocorrelation length.
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Figure 3: RMS error (left) and bias error (right) of the X component of the velocity estimates obtained with realistic
velocity fields. Top: pure gradient, bottom: pure curvature.

CNN FCNN LaVision
GTX970 GTX980TI GTX970 GTX980TI CPU GTX970

Loading to RAM from HDD 8.2 5.4 7.5 6.0 - -
Generating slice from RAM 0.4 0.3 0.2 0.2 - -
Computation on GPU 22.9 7.2 15.9 5.1 - -
Writing result to HDD 1.5 0.9 1.5 1.0 - -
Total time 33.0 13.8 25.1 12.3 70.6 55.0

Table 1: Computational times (in seconds) for 128000 vectors measured using CNN, FCNN and LaVision.

The level of Root Mean Square (RMS) error between ANNs predictions and the velocity values used
for generating the images is slightly higher than for state-of-the-art PIV codes. However ANNs may
have several advantages over more traditional 2D PIV methods. Benchmarking shows that ANNs
are better at using efficiently GPUs. ANNs have better resolution compared with traditional PIV
methods, which could be of interest in cases when high local flow variations are expected. We also
observed good boundary performance of ANNs compared with more traditional PIV methods.
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