

LowSalt project MP1 food matrix and interactions

Supervisors Achim Kohler / Nils Kristian Afseth / Ragni Ofstad PhD student: Nebojsa Perisic

overall aim of the project

to identify innovations that can reduce the NaCl level to 50 % of the current content of commercial products such as minced fish and meat, cured ham or smoked salmon.

NaCl reduction & substitution: focus on effects on:

- protein structural changes
- hydration properties of proteins water interactions
- hydration properties of meat WHC
- sensory properties / texture

methodology

- FTIR microscopy : existing platform + further development
- Raman microscopy
- NIR spectroscopy
- multivariate analysis

WP1 milestones

M 1.1

new methodology to study water and protein structures in a model system

M 1.2

salt substitutes and/or water-binders which mimic protein-water matrix as obtained with high NaCl-concentrations (> 3 %) in a model system are identified

M 1.3

salt substitutes and/or water-binders which mimic high salt-proteinwater matrix in minced fish and meat systems are identified

M 1.4

Testing of selected salt substitutes and/or water-binders in minced fish and meat products completed

M 1.5

Testing of selected salt substitutes and/or low salt technologies in cured ham completed

background muscle organisation

MOLECULAR STRUCTURE

Primary (sequence)

order of the individual building blocks AA connected by peptide bond

MOLECULAR STRUCTURE

Primary (sequence)

Secondary (local folding)

how these building blocks relate to each other stabilised by several interactions

outline - publications

3 salts - NaCl / KCl / MgSO₄

3 concentrations - 1,5 % / 6 % / 9 % Experiment 1 4 animals (beef)

3 spectroscopic methods- FTIR, Raman, NIR

Monitoring Protein Structural Changes and Hydration in Bovine Meat Tissue Due to Salt Substitutes by Fourier Transform Infrared (FTIR) Microspectroscopy

Journal of Agricultural and Food Chemistry

Perisic, N., Afseth, N. K., Ofstad, R., & Kohler, A. Monitoring Protein Structural Changes and Hydration in Bovine Meat Tissue Due to Salt Substitutes by Fourier Transform Infrared (FTIR) Microspectroscopy. *Journal of Agricultural and Food Chemistry*, 2011, *59*(18), 10052– 10061.

Step 1: literature overview- band assignement

Table 1. Band Positions and Assignments for the Amide I, Amide II, and Water Regions According to the Literature and Our Previous Work

region	freq (cm ⁻¹)	tentative assignment ^a
amide I	1693	aggregated β -sheet structures (sideband of 1631 cm ⁻¹ band), ^{32–35} M/P
1700-1600 cm ⁻¹	1682	native (parallel/antiparallel) β -sheet structures, ^{20,32,33,37} M/P/T
(80% C=O stretch,	1674	tentatively assigned to turns, ²² M/P
10% C—N stretch,	1667	nonhydrogenated C=O group, internal random coil segments that are
		not involved in H-bonding, ^{33,35} M/P
10% N—H bend)	1660	loop structures/α-helical structures, ^{16,43,51} M/P
	1655	α -helical structures, C=O stretching vibrations originating from α -helical
		structures in the myofibrillar proteins, ^{20,32,33,37} M/P/T or water vibratic, ^{36,38} P
	1638	water deformation mode in liquid water ^{19,52} P or native (parallel/antipara
		β -sheet structures, ^{22,33} M/P/T
	1631	aggregated β -sheet structures, ^{32–35} M/P
	1618	aggregated β -sheet structures, ^{16,43,51} M
	1611	tyrosine amino acid side chain vibrations ^{33,40} or aggregated strands, ⁴¹ M/P
amide II	1594	not assigned
1600-1500 cm ⁻¹	1584	α-helical structures, ³³ M
(60% N—H bend,	1575	amide II unspecified, ³³ M
40% C—N stretch)	1567	residue and/or possibly aggregated β -sheet structures, ^{33,42} M
	1547	α-helical structures, ³³ M/P
	1537	possibly aggregated β -sheet structures, ³³ M
	1516	possibly tyrosine, ³³ M/P
water region	3473	ponhwirogenated N—H groups ^{19,22,39} P
$3500 - 3000 \text{ cm}^{-1}$	3420	hydrogenated N—H groups or O—H stretching band. ^{21,22,39,53} T/P
(N—H stretching,	3361	companion band of 1530 cm ⁻¹ band, in solution occurring at 3345 cm ⁻¹ .
	0000	and/or N—H stretching band, ^{21,39} T/P
C—N—H stretching vibration,	3290	N—H stretching band/amide A, ^{21,22,39,42} T/P, or hydrogen-bonded NH g () s ¹⁹
O—H stretching vibration)	3190	not assigned
	3063	N—H stretch/amide B/amide II overtone/amide II combination mode in 💦 🔛 🦯
		β -sheet structures, ^{22,39} T/P
	3035	not assigned

"M, obtained in real meat system; P, obtained in pure protein or polypeptide model system; T, obtained by theoretical calculation and/or prediction

14

Step 2: PCA of separate regions

DNofima

Step 2: PCA of separate regions correlation loading plots: relating to design variables

16

Step 2: PCA of separate regions correlation loading plots: relating to design variables

positive correlation

correlation between variables

negative correlation

Step 2: **PCA** of separate regions correlation loading plots: relating to design variables

Step 4: water holding capacity

WHC $\uparrow = \Psi$ juice

 additional measurements (commercial meat samples)
 expressed juice method

supportig FTIR results:

- MgSO₄ highest WBC
 simillar to NaCl
- KCI lowest WBC
 different than NaCI

Characterising protein, salt and water interactions with combined vibrational spectroscopic techniques

Food Chemistry

Perisic, N., Afseth, N. K., Ofstad, R., Hassani, S. & Kohler, A. Characterising protein, salt and water interactions with combined vibrational spectroscopic techniques. *Food Chemistry*, **2012**, *in press*

Characterising protein, salt and water interactions with combined vibrational spectroscopic techniques

FTIR microscopy

Raman microscopy

NIR spectroscopy

find information

characteristic for each method common between methods

Paper 2 resulting data set

Paper 2 MB-PCA: correlation loading plot

Cation– π **interactions**: involving aromatic amino acids

AA residues with aromatic ring

Gas phase binding energies ($-\Delta H$) for alkali metals to benzene.

J. Nutr. June 1, 2007 vol. 137 no. 6 1504S-1508S

Paper 2 PCA: Raman AA residue bands

05.11.2012

Paper 2 PCA: Raman AA residue bands

26

Characterizing salt substitution in beef meat processing by vibrational spectroscopy and sensory analysis

Meat Science

Perisic, N.; Afseth, N. K.; Ofstad, R.; Narum, B.; Kohler, A.; Characterizing salt substitution in beef meat processing by vibrational spectroscopy and sensory analysis

Characterizing salt substitution in beef meat processing by vibrational spectroscopy and sensory analysis

Experiment 2

- 3 salts NaCl / KCl / MgSO4
- 1 concentrations **5,5** % (in marinade)
- 4 animals (beef)
- heat treatment
- ageing
- 2 spectroscopic methods FTIR, NIR
- sensory analysis

Paper 3 Study overview

Paper 3 WHC

Paper 3 Sensory analysis

sour, salty, bitter, cloyic, metalic

hardness, tenderness, fetness, juiciness

Linking structural changes and sensory properties in meat products subjected to salt reduction and salt substitution: a combined FTIR imaging and sensory study

LWT – Food Science and Technology

Perisic, N.; Afseth, N. K.; Ofstad, R.; Scheel, J.; Kohler, A.; Linking structural changes and sensory properties in meat products subjected to salt reduction and salt substitution: a combined FTIR imaging and sensory study

Paper 4 Study overview

05.11.2012

Paper 4 background

1 sample = 1-few components

Kohler, A.; Høst, V.; Enersen, G.; Ofstad, R., Identification of fat, protein matrix, and water/starch on microscopy images of sausages by a principal component analysis-based segmentation scheme. *Scanning* 2003, *25*, 109–115.

Paper 4 background

Paper 4 background

digital image

ma

thin cross sections

homogeneity

homogeneity

FTIR imaging results

homogeneity

05.11.2012

Paper 4 WHC

Paper 4 sensory

1⊦


```
salt concentration > salt type
intact meat – salts alone cause only partial denaturation
minsed+cooked meat – strong denaturation
– large differences between salts
MgSO<sub>4</sub> – boldly different effect
```

MgSO₄ – increases WHC – hydrogenates proteins KCl – decreases WHC – de-hydrogenates proteins

from meat model system to sausages

only affected by concentration – not salt type higher concentration – desired texture for all salts

MgSO₄ – negative effect on taste – when used in low portion – acceptable

Summary & conclusions

KCI - chemically simillar to NaCl

- bad for increasing WHC
- bad for taste (high portions)
- bad for sausage homogeneity

MgSO₄ - chemically different NaCl

- good/simillar effect on WHC as NaCl
- good for sausage homogeneity
- bad for taste (high portions)

can be used as a substitute to improve WHC / texture / homogeneity

Thank you!

