The Impact of EPI-based Distortion Correction of Dynamic Susceptibility Contrast MRI in Patients with Glioblastoma

¹Ivar T. Hovden, ¹Ingrid Digernes, ¹Oliver M. Geier, ²Grethe Løvland, ³Einar Vik-Mo, ^{3,4}Torstein R. Meling, ¹Kyrre E. Emblem (¹Department for Diagnostic Physics, ²The Intervention Centre, ³Department of Neurosurgery), Oslo University Hospital, Oslo, Norway; ⁴Department of Neurosurgery, Geneva University Hospitals, Geneva, Switzerland

Purpose

MRI-based Echo Planar Images (EPIs) are sensitive to magnetic susceptibility induced geometric and intensity distortions (Figure 1), which we correct using two independent methods^{1,3}. We evaluate the overall impact of the EPI distortion corrections by ranking 134 regions in Montreal Neurological Institute (MNI) space with decreasing rCBV change affected by the distortion corrections.

Distortions in positive (and negative if animated) phase encoded EPIs example. Left and middle (brown): GE and SE EPI. Right: k-space encoding.

Results and Discussion

- Major rCBV changes in and close to the basal forebrain (Figure 2 and 3).
- rCBV changes most pronounced in many of the same regions for GE rCBV and SE rCBV. Note that TOPUP and EPIC was made for SE EPIs and that GE rCBVs suffer from EPIs with additional signal loss and may also be less accurately coregistrated from the use of GE EPIs.

Method

45 newly diagnosed glioblastoma patients of age 40-84

- **Dual** Gradient-echo (GE) spin-echo (SE) negative and positive phase encoded EPI sequences (Figure 1). Contrast passage during **positive** phase encoded EPIs (DSC).
- Two correction methods (FSL TOPUP^{1,2} and EPIC³) each use negative and positive phase encoded EPIs (Figure 1) to compute deformation fields (Figure 2). Deformation fields used to correct DSC.
- Relative cerebral blood volume (rCBV) from DSC⁴ normalized to MNI space by co-registrating first dynamic DSC to 3D fluid attenuated inversion recovery (FLAIR) anatomical images⁵.
- Assessment of correction effects in rCBV by **ranking** median Hellinger⁶ and Wasserstein⁷ histogram distances for **134** brain regions in MNI space⁸ and looking at correspondence with **tumor** regions from a separate study⁹.
- Similar rCBV change across regions in left and right parts of the brain (Figure 2 upper right), opposed to locations of enhancing tumor (Figure 2 lower right).
- Differences in deformation fields across GE and SE EPIs.

top-134-combined_picked 1. 2. 3. 4. 5. 6. 7. Figure 3 8. 2x14 regions 9. with rCBV change 10. ranked high 11. (white, 1.)low(red, 14.). 12.

<u>Major rCBV change (MNI)</u>

- . Left & right basal forebrain
- 2. Left & right accumbens area
- 3. Left & right amygdala
- 4. Left & right entorhinal area
- 5. Left & right Pallidum
- Left & right postcentral gyrus medial segment
- . Left & right orbital part of the inferior frontal gyrus
 - Left & right medial frontal cortex
- Left & right gyrus rectus
- 10. Left & right parahippocampal gyrus
- .1. Left & right transverse temporal gyrus
 - Left & right posterior orbital gyrus
- 13. Left & right occipital pole
- 14. Left anterior orbital gyrus

Conclusion

GE and SE rCBV will benefit from distortion correction especially in lateral regions close to and in the basal forebrain.

- 1.Andersson, J. L. R. et. al. (2003). How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging
 2.Smith, S. M. et. al. (2004). Advances in functional and structural MR image analysis and implementation as FSL
 3.Holland, D. et. al. (2010). Efficient Correction of Inhomogeneous Static Magnetic Field-Induced Distortion in Echo Planar Imaging
 4. Bjørnerud, A. et. al. (2010). A Fully Automated Method for Quantitative Cerebral Hemodynamic Analysis Using DSC–MRI. Journal of Cerebral Blood Flow & Metabolism
 5.Penny, W. et. al. (2011). Statistical parametric mapping: The analysis of functional brain images
 6.Warner, G. C. et. al. (2018). Characterization of Diffusion Metric Map Similarity in Data From a Clinical Data Repository Using Histogram
- Distances 7.Rubner, Y et. al. (1998). A metric for distributions with applications to image databases
 - 8.Landman, B. et. al. (2012). MICCAI 2012 workshop on multi-atlas labeling
 - 9. Juan-Albarracín, J. et. al. (2019). ONCOhabitats: A system for glioblastoma heterogeneity assessment through MRI

