GPU Computing with CUDA (and beyond)
Part 1: a (gentle) introduction to CUDA
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GPUs for Scientific Computing

What, you want me to use a toy for scientific computing ?

Galen Gisler, Geilo Winter School, 2008
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The Price of a Teraflop

~

Simulates explosions
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A short history of CUDA / GPGPU

> ) UDA

1999 NVIDIA launches the first GeForce gaming cards
2001 GeForce 3 introduces programable shaders
2006 All GeForce 8 GPUs are CUDA — compatible

0( JDA v ,

2007 First Tesla cards for scientific computing

2010 Tianhe-1A with Fermi GPU becomes fastest supercomputer
2012 Keplerintroduces more cache, dynamic parallelism

2015 GPUs for deep learning become big business

2016 Pascal architecture more than 3x faster than Kepler

2018 Summit with Volta becomes the fastest supercomputer
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CUDA: Compute Unified Device Architecture

What is CUDA ?
a) Parallel computing plattform for NVIDIA GPUs
b) Language extension for C, C++, and Fortran

c) Software ecosystem
d) All of the above

What does CUDA stand for ?
CUDA = Compute Unified Device Architecture
(not commonly spelled out anymore)
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CUDA: Compute Unified Device Architecture

Why bother with CUDA ?

 Highly mature software

Al NVIDIA GPUs support CUDA

e The majority of GPU applications is written in CUDA

* CUDA allows low-level performance programing
with reasonable productivity

 Cheap teraflops
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CUDA: Programming Basics

~ _global  wvoid mykernel (void) {4_ Kernel

GPU
}
CPU int main(void) {
return 0;
}

CUDA functions are called kernels
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CUDA: Programming Basics

s =

Skylake Device

int main(void) {

mykernel<<<1l,1>>>() ; \
return O; ~_global  wvoid mykernel (void) {

} }
Kernel launch Kernel

GPU becomes active when called upon by the CPU
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Compiling CUDA Programs

global  wvoid mykernel (void) {

}
int main(void) {
mykernel<<<1l,1>>>();

return 0O;

nvce test.cu

Cuda programs are compiled with nvcc
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A more mtresting CUDA Program

~ _global  wvoid add(int *a, int *b, int *c) {
*c = *a + *b;

}

We need to allocate space for a, b, and c on the GPU
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Moving data between Device and Host

cudaMemcpy (d a, &a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (d b, &b, size, cudaMemcpyHostToDevice) ;

add<<<1,1>>>(d a, d b, d c);

cudaMemcpy (&c, d c, size, cudaMemcpyDeviceToHost) ;

Use cudaMemcpy () to move data
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Vector addition in CUDA

(int i=0; i<n; i++) < forloop:

c[i]=a[i]+b[i]; CPU programming

add<<<n,1>>>(d a, d b, d c) ;5 @ kernel launch:

/ \ CUDA programming

blocks threads per block

Kernel is launched onblocks * threads threads
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Parallel Vector addition in CUDA

for(int i=0; i<n; i++) C
c[i]=a[i]l+b[i];

CUDA
add<<<n,1>>>(d a, d b, d c);
~ global  wvoid add(int *a, int *b, int *c) ({

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

Use blockIdx.x toindexvariables in different blocks

15

Johannes Langguth, Geilo Winter School 2020



Parallel Vector addition in CUDA

Blocks
add<<<n,1>>>(d a, d b, d c);
~ global  wvoid add(int *a, int *b, int *c) ({
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}
‘  Threads

add<<<1l,n>>>(d a, d b, d c);
~_global  wvoid add(int *a, int *b, int *c) {
cl ] = al 1 + b] 1;
}

Use threadIdx.x toindex variables in different threads

within a block
16
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Threads vs Blocks

Why differentiate between threads and blocks ?

CUDA Grid CUDA Grid

Block 1 Block 2

Block O Block O

 Threads are located on a single multiprocessor
 Threads share fast memory

 Threads are executed together

 Threads per block are limited to 1024
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Parallel Vector addition with Threads and Blocks

add<<<ceil (n/128) ,128>>>(d a, d b, d c);

~ global  wvoid add(int *a, int *b, int *c) ({
int index = threadIdx.x + blockIdx.x * blockDim.x;
c[index] = a[index] + b[index];

e ——

2*%6+2

Ina 1D grid blockDim.x is equal to threads per block
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V100 Volta Overview

PCI Express 3.0 Host Interface

Memory Controller
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V100 Volta zoomed 1n

PCI Express 3.0 Host Interface

GigaThread Engine

80 SMs per GPU
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Thread Execution Exampel in CUDA

add<<<10080,1024>>>(d a, d b, d ¢c);

e 10000*1024 =10,321,920 threads in total

e 2 thread blocks per streaming multiprocessor (SM)
e 160 thread blocks / 81,920 threads run in parallel
* 63 consecutive thread block executions

21
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Thread Execution Exampe in CUDA

add<<<10080,1024>>>(d a, d b, d ¢c);

e 10000*1024 =10,321,920 threads in total

e 2 thread blocks per streaming multiprocessor (SM)
e 160 thread blocks / 163,840 threads run in parallel
* 63 consecutive thread block executions

 Advantage: Programmer does not have to worry about
consecutive/concurrent computation

* Disadvantage: Threads in different blocks do not “see”
each other
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Thread execution on the SM
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SIMT — GPU version of SIMD

Single Instruction Multiple Thread

32 threads execute the same instruction concurrently

e Besttouse 64, 128, 256, 512, or 1024 threads per block
* 32 concurrently running threads are called a Warp

* Memory accesses are warp-sized

e SIMT is hidden from the programmer

sl this leads to two problems
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SIMT Problems: Warp Divergence

~ global  wvoid add(int *a, int *b, int *c) ({
int index = threadIdx.x + blockIdx.x * blockDim.x;
(index == 0)

c[index] a[index]*2;

c [index] a[index] + b[index];

SIMT system cannot execute both paths at the same time.

25
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SIMT Problems: Warp Divergence

int index =
threadIdx.x
+ blockIdx.x
* blockDim.x;

if (index == 0)

Warp

c[index]=a[index] *2;
else

c[index] = a[index]
+ b[index];

return 0;

Somewhat improved in Volta generation, but still SIMT (SIMD).
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SIMT Problems: Warp Divergence

Pre-Volta Volta, Turing, future
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SIMT Problems: Coalescing

A warp of 32 threads must read 32 contiguous elements
from an array to get the maximum memory bandwidth,
although elements can be swapped between the threads.

NN NN .- ———

Memory

28
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Thread execution on the GPU

GPU code is most efficient when...

 Threads perform the same computation (no else statements)
 Threads read from consecutive memory locations

* Memory accesses are regular

 Enough threads to saturate device

29
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Enough threads to saturate device: Occupancy

80 SMs, 2048 threads each = 163,840 concurrent threads

Do we need all of them ?

For FLOPS: perform up to 2 * 32 DP flops per cycle per SM
For memory: each SM needs to request about 6KB constantly

SeEReen e:*aiw‘,w.,(,a SR
SO e e -

MAXIMUM
~ OCCUPANCY -

2048 Threads
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Enough threads to saturate device: Occupancy

80 SMs, 2048 threads each = 163,840 concurrent threads

Do we need all of them ?

For FLOPS: perform up to 2 * 32 DP flops per cycle per SM
For memory: each SM needs to request about 6KB constantly

What does constantly mean ?

Memory latency: ~1000 cycles @ 1.6 GHz = 625ns
800 GB/s = 10 GB/s per SM = 6250 KB
Full occupancy = 2048 threads

6250/2048 ~ 3 Byte/thread
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Enough threads to saturate device: Occupancy

High occupancy helps in hiding latency
Low occupancy leads to stalls when threads wait for new data

Reasons for low occupancy:

e Block size smaller than 64 (maximum of 32 blocks per SM)
* |nsufficient shared memory
* |nsufficient registers

32
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How many Registers can a Kernel use ?

High occupancy helps in hiding latency
Low occupancy leads to stalls when threads wait for new data

Volta V100 (same for most GPUs)

e Maximum of 255 registers per thread

* 64k registers of 32 bit (64 bit values take 2 registers.)
 64k/2048 =32

33
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How many Registers can a Kernel use ?

High occupancy helps in hiding latency
Low occupancy leads to stalls when threads wait for new data

Volta V100 (same for most GPUs)

e Maximum of 255 registers per thread

* 64k registers of 32 bit (64 bit values take 2 registers.)
64k/2048 = 32

At 2048 threads, each thread can use 32 registers

Thread blocks must fit entirely in registers.
33 register kernel: 1 block of 1024 vs 31 blocks of 64 threads
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L1 Cache and Shared Memory

Each SM can use up to 96 KB L1 as SM

shared memory
Shared memory is user managed
20-40x lower latency than DRAM
15x higher bandwidth than DRAM L1$ and Shared Memory
No coalescing necessary RS

35
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L1 Cache and Shared Memory

 Each SM can use up to 96 KB L1 as SM

shared memory
 Shared memory is user managed
* 20-40x lower latency than DRAM
 15x higher bandwidth than DRAM L1$ and Shared Memory
* No coalescing necessary RS

2048 threads / 96KB shared memory

~ 21 Byte per thread at ;

36
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How to check Occupancy: Nvprof profiler

File View Run Help
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More on CUDA: nvcc compiler

Part of the CUDA toolkit
Free to download, works with all NVIDIA GPUs
Usage like normal C compiler

nvcc test.cu

Select target GPU generation with:
—gencode arch=compute xy,code=sm Xy

Switch underlying compiler
—ccbin

<A NVIDIA.

CUDA.
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More on CUDA: Samples

langguth@lizhi:~$ 1ls /usr/local/cuda-10.1/samples
O Simple 1 Utilities 2 Graphics 3 Imaging 4 Finance

5 Simulations G;Advanced 7 CUDALibraries

langguth@lizhi:~$ 1ls /usr/local/cuda
10.1/samples/0 Simple/

asyncAPI fpl6ScalarProduct simpleAssert_nvrtc simpleMPI simpleSurfaceWrite template
cdpSimplePrint immaTensorCoreGemm simpleAtomicIntrinsics simpleMultiCopy simpleTemplates UnifiedMemoryStreams
cdpSimpleQuicksort inlinePTX simpleAtomicIntrinsics_nvrtc simpleMultiGPU simpleTemplates_nvrtc vectorAdd

clock inlinePTX nvrtc simpleCallback simpleOccupancy simpleTexture vectorAddDrv
clock_nvrtc matrixMul simpleCooperativeGroups simpleP2P simpleTextureDrv vectorAdd_nvrtc
cppIntegration matrixMulCUBLAS simpleCubemapTexture simplePitchLinearTexture simpleVoteIntrinsics

cppOverload matrixMulDrv simpleCudaGraphs simplePrintf simpleVotelIntrinsics_nvrtc

cudaOpenMP matrixMul nvrtc simpleIPC simpleSeparateCompilation simpleZeroCopy

cudaTensorCoreGemm simpleAssert simpleLayeredTexture simpleStreams systemWideAtomics

vectorAdd
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Learning from CUDA Samples: vectorADD

vectorAdd (const *A,
const *B, *C, int numElements)

i = blockDim.x * blockIdx.x + threadIdx.x;
i1f (i < numElements)

{
C[i] = A[i] + B[1i]:
}

GPU has dedicated cache for constants. Use it.
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More on CUDA: Nsight editor
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NVIDIA cuBLAS

Matrix Algebra on
GPU and Multicore

ROGUE WAVE

SOFTWARE

IMSL Library

More on CUDA: Libraries

=ULA|tools

GPU Accelerated
Linear Algebra

b
K

CenterSpace NMath

GLPU USIPL

Vector Signal
Image Processing

ArrayFire |

1A

Building-block C++ Templated
Algorithms Parallel Algorithms

Credit: Lecture contains NVIDIA material available at https://developer.nvidia.com/cuda-zone 4,
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