GPU Computing with CUDA (and beyond)
Part 1: a (gentle) introduction to CUDA

- / A
\ Joannes Dangguth ",
Simufla ResearclFLaboratory

GPUs for Scientific Computing

What, you want me to use a toy for scientific computing ?

Galen Gisler, Geilo Winter School, 2008

Johannes Langguth, Geilo Winter School 2020

The Price of a Teraflop

~

Simulates explosions

Johannes Langguth, Geilo Winter School 2020

The Price of a Teraflop

Simulates explosions 4

Johannes Langguth, Geilo Winter School 2020

The Price of a Teraflop

Simulates explosions Simulates explosions

Johannes Langguth, Geilo Winter School 2020

A short history of CUDA / GPGPU

>) UDA

1999 NVIDIA launches the first GeForce gaming cards
2001 GeForce 3 introduces programable shaders
2006 All GeForce 8 GPUs are CUDA — compatible

0(JDA v ,

2007 First Tesla cards for scientific computing

2010 Tianhe-1A with Fermi GPU becomes fastest supercomputer
2012 Keplerintroduces more cache, dynamic parallelism

2015 GPUs for deep learning become big business

2016 Pascal architecture more than 3x faster than Kepler

2018 Summit with Volta becomes the fastest supercomputer

6

Johannes Langguth, Geilo Winter School 2020

CUDA: Compute Unified Device Architecture

What is CUDA ?
a) Parallel computing plattform for NVIDIA GPUs
b) Language extension for C, C++, and Fortran

c) Software ecosystem
d) All of the above

What does CUDA stand for ?
CUDA = Compute Unified Device Architecture
(not commonly spelled out anymore)

Johannes Langguth, Geilo Winter School 2020

CUDA: Compute Unified Device Architecture

Why bother with CUDA ?

 Highly mature software

Al NVIDIA GPUs support CUDA

e The majority of GPU applications is written in CUDA

* CUDA allows low-level performance programing
with reasonable productivity

 Cheap teraflops

Johannes Langguth, Geilo Winter School 2020

CUDA: Programming Basics

~ _global wvoid mykernel (void) {4_ Kernel

GPU
}
CPU int main(void) {
return 0;
}

CUDA functions are called kernels

Johannes Langguth, Geilo Winter School 2020

CUDA: Programming Basics

s =

Skylake Device

int main(void) {

mykernel<<<1l,1>>>() ; \
return O; ~_global wvoid mykernel (void) {

} }
Kernel launch Kernel

GPU becomes active when called upon by the CPU

10

Johannes Langguth, Geilo Winter School 2020

Compiling CUDA Programs

global wvoid mykernel (void) {

}
int main(void) {
mykernel<<<1l,1>>>();

return 0O;

nvce test.cu

Cuda programs are compiled with nvcc

Johannes Langguth, Geilo Winter School 2020

11

A more mtresting CUDA Program

~ _global wvoid add(int *a, int *b, int *c) {
*c = *a + *b;

}

We need to allocate space for a, b, and c on the GPU

12

Johannes Langguth, Geilo Winter School 2020

Moving data between Device and Host

cudaMemcpy (d a, &a, size, cudaMemcpyHostToDevice) ;
cudaMemcpy (d b, &b, size, cudaMemcpyHostToDevice) ;

add<<<1,1>>>(d a, d b, d c);

cudaMemcpy (&c, d c, size, cudaMemcpyDeviceToHost) ;

Use cudaMemcpy () to move data

13

Johannes Langguth, Geilo Winter School 2020

Vector addition in CUDA

(int i=0; i<n; i++) < forloop:

c[i]=a[i]+b[i]; CPU programming

add<<<n,1>>>(d a, d b, d c) ;5 @ kernel launch:

/ \ CUDA programming

blocks threads per block

Kernel is launched onblocks * threads threads

14

Johannes Langguth, Geilo Winter School 2020

Parallel Vector addition in CUDA

for(int i=0; i<n; i++) C
c[i]=a[i]l+b[i];

CUDA
add<<<n,1>>>(d a, d b, d c);
~ global wvoid add(int *a, int *b, int *c) ({

c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];
}

Use blockIdx.x toindexvariables in different blocks

15

Johannes Langguth, Geilo Winter School 2020

Parallel Vector addition in CUDA

Blocks
add<<<n,1>>>(d a, d b, d c);
~ global wvoid add(int *a, int *b, int *c) ({
c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x];

}
‘ Threads

add<<<1l,n>>>(d a, d b, d c);
~_global wvoid add(int *a, int *b, int *c) {
cl] = al 1 + b] 1;
}

Use threadIdx.x toindex variables in different threads

within a block
16

Johannes Langguth, Geilo Winter School 2020

Threads vs Blocks

Why differentiate between threads and blocks ?

CUDA Grid CUDA Grid

Block 1 Block 2

Block O Block O

 Threads are located on a single multiprocessor
 Threads share fast memory

 Threads are executed together

 Threads per block are limited to 1024

17

Johannes Langguth, Geilo Winter School 2020

Parallel Vector addition with Threads and Blocks

add<<<ceil (n/128) ,128>>>(d a, d b, d c);

~ global wvoid add(int *a, int *b, int *c) ({
int index = threadIdx.x + blockIdx.x * blockDim.x;
c[index] = a[index] + b[index];

e ——

2*%6+2

Ina 1D grid blockDim.x is equal to threads per block

18

Johannes Langguth, Geilo Winter School 2020

V100 Volta Overview

PCI Express 3.0 Host Interface

Memory Controller
J9jj03u0) Aiowapy

-
g §
[<]

.E o
s <
2 g
3 L
E S
g g
2 3

Memory Controller
19]j03u0) Alowaly

Memory Controller
J9]jo3u0) fiowap

RS2 RS2 R S = s
NVLink NVLink NVLink NVLink NVLink NVLink

Johannes Langguth, Geilo Winter Schoo

V100 Volta zoomed 1n

PCI Express 3.0 Host Interface

GigaThread Engine

80 SMs per GPU

“ 20

Johannes Langguth, Geilo Winter School 2020

Thread Execution Exampel in CUDA

add<<<10080,1024>>>(d a, d b, d ¢c);

e 10000*1024 =10,321,920 threads in total

e 2 thread blocks per streaming multiprocessor (SM)
e 160 thread blocks / 81,920 threads run in parallel
* 63 consecutive thread block executions

21

Johannes Langguth, Geilo Winter School 2020

Thread Execution Exampe in CUDA

add<<<10080,1024>>>(d a, d b, d ¢c);

e 10000*1024 =10,321,920 threads in total

e 2 thread blocks per streaming multiprocessor (SM)
e 160 thread blocks / 163,840 threads run in parallel
* 63 consecutive thread block executions

 Advantage: Programmer does not have to worry about
consecutive/concurrent computation

* Disadvantage: Threads in different blocks do not “see”
each other

22

Johannes Langguth, Geilo Winter School 2020

Thread execution on the SM

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT INT FP32 FP32
INT FP32 FP32

INT FPS2FPS2 TENSOR TENSOR

INT FP32 FP32 CORE CORE

INT FP32 FP32
INT INT FP32 FP32

INT INT FP32 FP32

LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST SFU

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT INT FP32 FP32
INT FP32 FP32

INT FP32FP32 TENSOR TENSOR

INT FP32 FP32 CORE CORE

INT FP32 FP32
INT INT FP32 FP32

INT INT FP32 FP32

LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST SFU

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT FP32 FP32
INT FP32 FP32
INT FP32 FP32

Ly FPS2FP32 TENSOR TENSOR

INT FP32 FP32 CORE CORE

INT FP32 FP32
INT FP32 FP32

INT INT FP32 FP32

LD/ LD/ LD/ LD/ LD/
ST ST ST ST ST SFU

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/ LD/
ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT FP32 FP32
INT FP32 FP32

LAl FP32FP32 TENSOR TENSOR

INT FP32 FP32 CORE CORE

INT FP32 FP32
INT FP32 FP32

INT INT FP32 FP32

LD/ LD/ LD/ LD/
ST ST ST ST

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/ LD/
ST ST

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT

INT

INT

INT

INT

INT

INT

INT

LD/
ST

INT

INT

INT

INT

INT

INT

INT

INT

LD/
ST

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

LD/ LD/
ST ST

TENSOR TENSOR
CORE CORE

LD/
ST

128KB L1 Data Cache / Shared Memory

Tex

Tex

Johannes Langguth, Geilo Winter School 2020

SIMT — GPU version of SIMD

Single Instruction Multiple Thread

32 threads execute the same instruction concurrently

e Besttouse 64, 128, 256, 512, or 1024 threads per block
* 32 concurrently running threads are called a Warp

* Memory accesses are warp-sized

e SIMT is hidden from the programmer

sl this leads to two problems

Johannes Langguth, Geilo Winter School 2020

24

SIMT Problems: Warp Divergence

~ global wvoid add(int *a, int *b, int *c) ({
int index = threadIdx.x + blockIdx.x * blockDim.x;
(index == 0)

c[index] a[index]*2;

c [index] a[index] + b[index];

SIMT system cannot execute both paths at the same time.

25

Johannes Langguth, Geilo Winter School 2020

SIMT Problems: Warp Divergence

int index =
threadIdx.x
+ blockIdx.x
* blockDim.x;

if (index == 0)

Warp

c[index]=a[index] *2;
else

c[index] = a[index]
+ b[index];

return 0;

Somewhat improved in Volta generation, but still SIMT (SIMD).

26

Johannes Langguth, Geilo Winter School 2020

SIMT Problems: Warp Divergence

Pre-Volta Volta, Turing, future

27

Johannes Langguth, Geilo Winter School 2020

SIMT Problems: Coalescing

A warp of 32 threads must read 32 contiguous elements
from an array to get the maximum memory bandwidth,
although elements can be swapped between the threads.

NN NN .- ———

Memory

28

Johannes Langguth, Geilo Winter School 2020

Thread execution on the GPU

GPU code is most efficient when...

 Threads perform the same computation (no else statements)
 Threads read from consecutive memory locations

* Memory accesses are regular

 Enough threads to saturate device

29

Johannes Langguth, Geilo Winter School 2020

Enough threads to saturate device: Occupancy

80 SMs, 2048 threads each = 163,840 concurrent threads

Do we need all of them ?

For FLOPS: perform up to 2 * 32 DP flops per cycle per SM
For memory: each SM needs to request about 6KB constantly

SeEReen e:*aiw‘,w.,(,a SR
SO e e -

MAXIMUM
~ OCCUPANCY -

2048 Threads

30

Johannes Langguth, Geilo Winter School 2020

Enough threads to saturate device: Occupancy

80 SMs, 2048 threads each = 163,840 concurrent threads

Do we need all of them ?

For FLOPS: perform up to 2 * 32 DP flops per cycle per SM
For memory: each SM needs to request about 6KB constantly

What does constantly mean ?

Memory latency: ~1000 cycles @ 1.6 GHz = 625ns
800 GB/s = 10 GB/s per SM = 6250 KB
Full occupancy = 2048 threads

6250/2048 ~ 3 Byte/thread

31

Johannes Langguth, Geilo Winter School 2020

Enough threads to saturate device: Occupancy

High occupancy helps in hiding latency
Low occupancy leads to stalls when threads wait for new data

Reasons for low occupancy:

e Block size smaller than 64 (maximum of 32 blocks per SM)
* |nsufficient shared memory
* |nsufficient registers

32

Johannes Langguth, Geilo Winter School 2020

How many Registers can a Kernel use ?

High occupancy helps in hiding latency
Low occupancy leads to stalls when threads wait for new data

Volta V100 (same for most GPUs)

e Maximum of 255 registers per thread

* 64k registers of 32 bit (64 bit values take 2 registers.)
 64k/2048 =32

33

Johannes Langguth, Geilo Winter School 2020

How many Registers can a Kernel use ?

High occupancy helps in hiding latency
Low occupancy leads to stalls when threads wait for new data

Volta V100 (same for most GPUs)

e Maximum of 255 registers per thread

* 64k registers of 32 bit (64 bit values take 2 registers.)
64k/2048 = 32

At 2048 threads, each thread can use 32 registers

Thread blocks must fit entirely in registers.
33 register kernel: 1 block of 1024 vs 31 blocks of 64 threads

34

Johannes Langguth, Geilo Winter School 2020

L1 Cache and Shared Memory

Each SM can use up to 96 KB L1 as SM

shared memory
Shared memory is user managed
20-40x lower latency than DRAM
15x higher bandwidth than DRAM L1$ and Shared Memory
No coalescing necessary RS

35

Johannes Langguth, Geilo Winter School 2020

L1 Cache and Shared Memory

 Each SM can use up to 96 KB L1 as SM

shared memory
 Shared memory is user managed
* 20-40x lower latency than DRAM
 15x higher bandwidth than DRAM L1$ and Shared Memory
* No coalescing necessary RS

2048 threads / 96KB shared memory

~ 21 Byte per thread at ;

36

Johannes Langguth, Geilo Winter School 2020

How to check Occupancy: Nvprof profiler

File View Run Help

Wme-eealrR@aL CRE.

w3

\1.8:56 s 1857 s

1'8-58 s

1.8?9 H

1.8|6 H 1.8?1 3

1.8?2 H

1.8?3 H

1.8?4 s 1.8?5 H

[=] Process 20023
[=] Thread 80144192
- Runtime API
- Driver API
L Profiling Overhead
[=| Process 20024
[=] Thread 80144192
- Runtime API
- Driver AP
- Profiling Overhead
[=| Process 20025
[= Thread 80144192
- Runtime API
- Driver AP
L Profiling Overhead
[=] [0] Tesla K20¢
[=] Context MPS (CUDA}
L SF MemCpy (HtoD)
L SF MemCpy (DtoH)

[=| Compute

[=| Streams
L Stream 6-20023
L Stream 12-20023
L Stream 6-20024
L Stream 12-20024
L Stream 6-20025
Stream 12-20025

r

L SF 100.0% kernel(int v...

cudaDeviceSynch...

kernel(int volatile *, int, int, int)

kernel(int volatile ¥, int, int, int)
kernel(int volatile ¥, int, int, int)

kernel(int volatile ¥, int, int, int)
kernel(int volatile ¥, int, int, int)

kernel(int volatile *, int, int, int)

kernel(int volatile ¥, int, int, int)

kernel(int volatile ¥, int, int, int)

kernel(int volatile ¥, int, int, int)

kernel(int volatile *, int, int, int)
kernel(int volatile ¥, int, int, int)
kernel(int volatile int, int)
kernel(int volatile ¥, int, int, int)
kernel(int volatile ¥, int, int, int)

kernel(int volatile *, int, int, int)

kernel(int volatile ¥, int, int, int)

kernel(int volatile ¥, int, int, int)

kernel(int volatile *, int, int, int)

|

f @

Johannes Langguth, Geilo Winter School 2020

37

More on CUDA: nvcc compiler

Part of the CUDA toolkit
Free to download, works with all NVIDIA GPUs
Usage like normal C compiler

nvcc test.cu

Select target GPU generation with:
—gencode arch=compute xy,code=sm Xy

Switch underlying compiler
—ccbin

<A NVIDIA.

CUDA.

38

Johannes Langguth, Geilo Winter School 2020

More on CUDA: Samples

langguth@lizhi:~$ 1ls /usr/local/cuda-10.1/samples
O Simple 1 Utilities 2 Graphics 3 Imaging 4 Finance

5 Simulations G;Advanced 7 CUDALibraries

langguth@lizhi:~$ 1ls /usr/local/cuda
10.1/samples/0 Simple/

asyncAPI fpl6ScalarProduct simpleAssert_nvrtc simpleMPI simpleSurfaceWrite template
cdpSimplePrint immaTensorCoreGemm simpleAtomicIntrinsics simpleMultiCopy simpleTemplates UnifiedMemoryStreams
cdpSimpleQuicksort inlinePTX simpleAtomicIntrinsics_nvrtc simpleMultiGPU simpleTemplates_nvrtc vectorAdd

clock inlinePTX nvrtc simpleCallback simpleOccupancy simpleTexture vectorAddDrv
clock_nvrtc matrixMul simpleCooperativeGroups simpleP2P simpleTextureDrv vectorAdd_nvrtc
cppIntegration matrixMulCUBLAS simpleCubemapTexture simplePitchLinearTexture simpleVoteIntrinsics

cppOverload matrixMulDrv simpleCudaGraphs simplePrintf simpleVotelIntrinsics_nvrtc

cudaOpenMP matrixMul nvrtc simpleIPC simpleSeparateCompilation simpleZeroCopy

cudaTensorCoreGemm simpleAssert simpleLayeredTexture simpleStreams systemWideAtomics

vectorAdd

39

Johannes Langguth, Geilo Winter School 2020

Learning from CUDA Samples: vectorADD

vectorAdd (const *A,
const *B, *C, int numElements)

i = blockDim.x * blockIdx.x + threadIdx.x;
i1f (i < numElements)

{
C[i] = A[i] + B[1i]:
}

GPU has dedicated cache for constants. Use it.

40

Johannes Langguth, Geilo Winter School 2020

More on CUDA: Nsight editor

g e O " -
‘) Project Explore B -
-~ @ -
¥ & findmax
v ¢ 8inarles
* & findmax - [x86_64, sm_10
* 3 Includes
Y @Psrc
>

* & Deduyg

if (arrayli] > max) {
“index = §;
max = arrayli):
)
)

retern max;

WInt3? t deviceFiataxicoast vwint3I? ¢ arravil. wint3) ¢ *maxiodes. coast wint3) + lenath) ¢ °

wWritable Smat Insert 13:1

Johannes Langguth, Geilo Winter School 2020

g &3 ¢~ G- °¢ o. o“o Qo 8 .. l ’) L] IR . -1 = ‘ L] IQ
dmaxcy i3 Y "D Eowi ®OMm>ca 0O
wint3Z t max = array[firstElesentindex); - 5 -
uint32 t maxindex = firstElesentIndex; G RY e n
uint32 t mextElemsent; o inttypes.h
uint32 t § = firstElesentindex o threadsCount; o stdio.h
for (: 1 < ARRAY SIZE; 1 = threadsCount) (U stdd.h
nextElement = array(i); W string.h
if (nextElement > max)
max = nextElement; @ ARRAY_SIZE
saxindex = §: # BLOCXS
;) # THREADS
thresdax|[threadide.x] = max; ® MEMORV_BANKS
threadMaxida[threadids.x] = maxindex; # CUDA_CHECK _RETURN()
ol thhn. threednagds) o findMaxSingleThread{uint32
L re ° re . .
» % o reduce{uintd2_t*, uiet32 t*)
£ (1threadids.x) (/7 After reduce sax will e In thread ¢ e cudafindClobalMax{uint32 t
array[blockide.x] = threadax(9]); Max{ui)y
array[blockide.x « BLXKS] = threadMaxidx[e]; S -(unuz_‘)
o hostrindMax{const uint32 ¢
) o devicelindMax(comst w32
wint3) t bostFiadMax(coast wintil t arrayl], winti2 t *index, coast wintll t arraylength) (S AL Seni) e
wintd2 t §, max = O: o verifyResult{uint32_t, uint32_
for (1 = 9; i < arraylength; 1++) { o main(int, char**) int

NVIDIA cuBLAS

Matrix Algebra on
GPU and Multicore

ROGUE WAVE

SOFTWARE

IMSL Library

More on CUDA: Libraries

=ULA|tools

GPU Accelerated
Linear Algebra

b
K

CenterSpace NMath

GLPU USIPL

Vector Signal
Image Processing

ArrayFire |

1A

Building-block C++ Templated
Algorithms Parallel Algorithms

Credit: Lecture contains NVIDIA material available at https://developer.nvidia.com/cuda-zone 4,

Johannes Langguth, Geilo Winter School 2020

