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GPU Computing with CUDA (and beyond)
Part 3: Programing Multiple GPUs
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• 16 NVIDIA V100 Volta GPUs
• 16x 32 GB RAM 
• 300 GB/s between GPUs
• 2 Intel Skylake Xeon CPUs
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GPUs have 300 GB/s to NVSwitch crossbar
Bisection bandwidth: 2.4 TB/s
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FP64 throughput Memory bandwidth

Device type TFLOPS Ratio of total GB/s Ratio of total

CPUs 2.07 0.016 140 0.010
GPUs 130.88 0.984 14192 0.990
Total 132.95 1.000 14332 1.000

Table 2.6: Total FP64 throughput and memory bandwidth of the CPUs and
GPUs in the DGX-2.

NVSwitch

GPU 0

GPU 1

GPU 2

GPU 3 GPU 4

GPU 5

GPU 6

GPU 7

GPU 8

GPU 9

GPU 10

GPU 11GPU 12

GPU 13

GPU 14

GPU 15

Figure 2.4: The GPU topology of the DGX-2. All GPUs have full 265 GB/s
bidirectional bandwidth to the NVSwitch.

2.6.2 bigfacet

bigfacet is a custom dual-socket system, equipped with 8 P100 GPUs
connected via PCI Express. On the CPU side, the server is arguably under-
specced with a measly Intel Xeon E5-2620 v4 8C/16T CPU 14 per socket,
running at a base clock of 2.1 GHz. Both sockets are configured with quad-
channel memory running at 2133 MT/s. We measured the host memory
bandwidth, µbigfacet CPUs, to be 72 GB/s for the triad kernel from STREAM.

As the CPU is based on Intel’s Broadwell architecture, it does not
support AVX-512, and it can only throughput 8 FLOP per core per cycle,

14https://ark.intel.com/content/www/us/en/ark/products/92986/
intel-xeon-processor-e5-2620-v4-20m-cache-2-10-ghz.html
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• Attainable memory bandwidth is lower than the max
• A simple benchmark gives a realistic upper bound

void tuned_STREAM_Triad(STREAM_TYPE scalar) {
ssize_t j; 
#pragma omp parallel for 
for (j=0; j<STREAM_ARRAY_SIZE; j++) 

a[j] = b[j]+scalar*c[j]; 
}
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• Attainable memory bandwidth is lower than the max
• A simple benchmark gives a realistic upper bound

void tuned_STREAM_Triad(STREAM_TYPE scalar) {
ssize_t j; 
#pragma omp parallel for 
for (j=0; j<STREAM_ARRAY_SIZE; j++) 

a[j] = b[j]+scalar*c[j]; 
}

Some numbers: STREAM Max
Xeon Platinum 8160 223 GB/s 238 GB/s
Pascal P100 557 GB/s 720 GB/s
Volta V100 855 GB/s 900 GB/s
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• Rather than expanding the role of the CPU, make sure 
CPU doesn’t become a bottleneck

• 300 GB/s between GPUs is faster than almost all CPUs
• We need to keep data on the GPUs as long as possible
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Some helpful functions:

cudaGetDeviceCount(int *count)
cudaSetDevice(int device)
cudaGetDevice(int *device)
cudaGetDeviceProperties(cudaDeviceProp *prop, int device)

We can launch a kernel on each GPU with:

int *count;
cudaGetDeviceCount(count);
for(int i=0; i<count; i++) {

cudaSetDevice(i);
add<<<n,128>>>(d_a[i], d_b[i], d_c[i]);

}
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We can launch a kernel on each GPU with:

int *count;
cudaGetDeviceCount(count);
for(int i=0; i<count; i++) {

cudaSetDevice(i);
add<<<n,128>>>(d_a[i], d_b[i], d_c[i]);

}

Launching Kernels is not enough. We also need 
to communicate with the GPUs.
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Remember that we also need to copy data to and from the GPUs:

int *count;
cudaGetDeviceCount(count);
for(int i=0; i<count; i++) {

cudaSetDevice(i);
cudaMemcpy(d_a[i],a[i], size, H2D);
cudaMemcpy(d_b[i],b[i], size, H2D);
add<<<n,128>>>(d_a[i], d_b[i], d_c[i]); 
cudaMemcpy(c[i],d_c[i], size, D2H);

}

Now we have a problem….
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Maybe we can launch kernels on all GPUs and then collect the results:

for(int i=0; i<count; i++) {
cudaSetDevice(i);
cudaMemcpy(d_a[i],a[i], size, H2D);
cudaMemcpy(d_b[i],b[i], size, H2D);
add<<<n,128>>>(d_a[i], d_b[i], d_c[i]); 

}

for(int i=0; i<count; i++) {
cudaSetDevice(i);
cudaMemcpy(&c[i],d_c[i], size, D2H);

}
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Maybe we can launch kernels on all GPUs and then collect the results:

for(int i=0; i<count; i++) {
cudaSetDevice(i);
cudaMemcpy(d_a[i],a[i], size, H2D);
cudaMemcpy(d_b[i],b[i], size, H2D);
add<<<n,128>>>(d_a[i], d_b[i], d_c[i]); 

}

for(int i=0; i<count; i++) {
cudaSetDevice(i);
cudaMemcpy(&c[i],d_c[i], size, D2H);

}

Now the kernels run in parallel, but the Memcpy is still sequential.
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We need to take a closer look at things here:

cudaMemcpy(d_b[i],b[i], size, H2D);

cudaMemcpy is synchrounous for the host. 
CPU will wait until copy is done.
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We need to take a closer look at things here:

cudaMemcpy(d_b[i],b[i], size, H2D);

cudaMemcpy is synchrounous for the host. 
CPU will wait until copy is done.

add<<<n,128>>>(d_a[i], d_b[i], d_c[i]); 

Kernel launch is asynchrounous for the host. CPU will continue 
immediately (unless CUDA_LAUNCH_BLOCKING = 1).
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add<<<n,128>>>(d_a[i], d_b[i], d_c[i]); 

Kernel launch is asynchrounous for the host. CPU will continue 
immediately.

cudaMemcpy(c[i],d_c[i], size, D2H);

In our examples, kernel launch is followed by cudaMemcpy, so the 
CPU waits again.

Let’s enable concurrent transfers !
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for(int i=0; i<count; i++) {
cudaSetDevice(i);
cudaMemcpyAsynch(d_a[i],a[i], size, H2D);
cudaMemcpyAsynch(d_b[i],b[i], size, H2D);
add<<<n,128>>>(d_a[i], d_b[i], d_c[i]); 
cudaMemcpyAsynch(c[i],d_c[i], size, D2H);

}

Does this work ? What happens to the calls on the GPU ?
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• All calls to the GPU are executed in FIFO queues called Streams
• By default, only one default stream, the default stream 0
• Therefore, cudaMemcpyAsynch happen one after the other 

on the GPU
• Problem: tell CPU that GPU is done
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for(int i=0; i<count; i++) {
cudaSetDevice(i);
cudaMemcpyAsynch(d_a[i],a[i], size, H2D);
cudaMemcpyAsynch(d_b[i],b[i], size, H2D);
add<<<n,128>>>(d_a[i], d_b[i], d_c[i]); 
cudaMemcpyAsynch(c[i],d_c[i], size, D2H);

}

for(int i=0; i<count; i++) {
cudaSetDevice(i);
cudaStreamSynchronize(0);

}

Synchronize each GPU after computation and transfer.
Alternative: cudaDeviceSynchronize();



Back to our Application
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Split domain into one part per GPU 

GPU 0 GPU 1
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U, K, and W need to exchange data with GPU 1

T

Z

S

U

K

W

GPU 0 GPU 1
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Replicated vector means that offsets never change.
We only copy newly computed data to update.  
Let sep[0][1] be the offset of the separator between 0 and 1.

GPU 0 GPU 1

V[0] V[1]

sep[1][0] 

sep[0][1] 
U
K
W

Z
S
T



Data Exchange

22
Johannes Langguth, Geilo Winter School 2020

U, K, and W need to exchange data with GPU 1
U, K, and W form a separator (need to reorder in one block)
We can use device to device memcpy

for(int i=0; i<count; i++) {
cudaSetDevice(i);
computeNewTimeStep<<<n,128>>>(A,I,D,V);
for(int j=0; j<count; j++) 

if(i != j)
cudaMemcpyAsynch(V[i][sep[i][j]],V[i][sep[i][j]], 
sepsize, cudaMemcpyDeviceToDevice);

}

Target device is found automatically through 
address of V[i][sep[i][j]] in Unified Virtual Adressing



Unified Virtual Adressing
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A single adress space among CPU and GPUs.
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Need to make sure transfers are completed:

for(int i=0; i<count; i++) {
cudaSetDevice(i);
computeNewTimeStep<<<n,128>>>(A,I,D,V);
for(int j=0; j<count; j++) 

if(i != j)
cudaMemcpyAsynch(V[i][sep[i][j]],V[i][sep[i][j]], 
sepsize, cudaMemcpyDeviceToDevice);

}

for(int i=0; i<count; i++) {
cudaSetDevice(i);
cudaStreamSynchronize(0);

}
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Data exchange works, but it has several drawbacks:

• Computation has to wait 
• Communication may be very unbalanced
• We have to wait for the slowest
• The more GPUs, the higher the overhead

How can we overlap communication and computation ?

With more streams!
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for(int i=0; i<count; i++) {
cudaSetDevice(i);
cudaStream_t stream1, stream2;     
cudaStreamCreate ( &stream1) ;
cudaStreamCreate ( &stream2) ;

computeNewTimeStepSEP<<<k,128,0,stream1>>>(A,I,D,V);
computeNewTimeStepMAIN<<<n,128,0,stream2>>>(A,I,D,V);
for(int j=0; j<count; j++) 

if(i != j)
cudaMemcpyAsynch(V[i][sep[i][j]],V[i][sep[i][j]], 
sepsize, cudaMemcpyDeviceToDevice,stream1);

}

This should put the main computation and memcopy in 
different streams, but….



Communication / Computation Overlap

27
Johannes Langguth, Geilo Winter School 2020

Each CUDA context needs its own streams. Easy to fix but 
messy to write. Also, each Memcpy can use its own stream.

for(int i=0; i<count; i++) {
cudaSetDevice(i);
cudaStream_t stream1, stream2;     
cudaStreamCreate ( &stream1) ;
cudaStreamCreate ( &stream2) ;
computeNewTimeStepSEP<<<n,128,0,stream1>>>(A,I,D,V);
computeNewTimeStepMAIN<<<n,128,0,stream2>>>(A,I,D,V);
for(int j=0; j<count; j++) 

if(i != j)
cudaMemcpyAsynch(V[i][sep[i][j]],V[i][sep[i][j]], 
sepsize, cudaMemcpyDeviceToDevice, stream1);

}
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• OpenMP is a C/C++/Fortran language extension.
• OpenMP is primarily meant to make multicore programing.
• Using OpenMP to create has multiple advantages

1. Code becomes easier to read
2. CPU reacts faster to GPU events
3. Modern CPUs have little memory bandwidth per core



OpenMP for Multi-GPU Control
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• OpenMP forks the master thread to create parallel regions. 
• An OpenMP thread is an OS thread, not a CUDA thread.
• We should have at least one core per GPU (physical/virtual).
• We can declare private variables inside a parallel region.
• Every OpenMP thread will have a copy of the variable.
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omp_set_num_threads(count);
#pragma omp parallel
{

int i = omp_get_thread_num();
cudaSetDevice(i);
double *V;
cudaMalloc((void **)&V, n*sizeof(double));
cudaStream_t stream1, stream2;     
cudaStreamCreate ( &stream1) ;
cudaStreamCreate ( &stream2) ;
computeNewTimeStepSEP<<<n,128,0,stream1>>>(A,I,D,V);
computeNewTimeStepMAIN<<<n,128,0,stream2>>>(A,I,D,V);
for(int j=0; j<count; j++) 

if(i != j)
cudaMemcpyAsynch(V[sep[i][j]],V[sep[i][j]], 
sepsize, cudaMemcpyDeviceToDevice, stream1);

cudaDeviceSynchronize();
}
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I A D V

V[9]t+1 = A[9,0] * V[I[9,0]]t + 
A[9,1] * V[I[9,1]]t + 
A[9,2] * V[I[9,2]]t + D[9] * V[9]t

Rowwise computation is possible, but not coalesced. 
Columnwise also allows FMA
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I A Vt+1

Compute  V[k]t+1 = V[k]t+1 + A[k,0] * V[I[k,0]]t for 32 rows at 
once. Then move to column 1. 
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I A Vt+1

Compute  V[k]t+1 = V[k]t+1 + A[k,1] * V[I[k,1]]t for 32 rows at 
once. Then move to column 2. 
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I A Vt+1

Compute  V[k]t+1 = V[k]t+1 + A[k,0] * V[I[k,0]]t for 32 rows at 
once. Then move to column 1. 
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P100 V100

TR (achieved time) 7.60 ms 4.20 ms

TR
memory bound 5.64 ms 3.55 ms

TR
compute bound
unoptimised 7.45 ms 4.34 ms

TR
compute bound
optimised 5.22 ms 3.03 ms

TR
memory bound/TR 0.742 0.845

TR
compute bound
optimised /TR 0.686 0.721

Table 5.5: Cell model performance relative to memory and compute
bounds.

The optimised kernel uses 128 registers, limiting us to having
216 registers

27 registers/thread = 29 = 512 resident threads per SM, corresponding to an

occupancy of 29

211 = 0.25 . Recall from Section 2.4 that having a high oc-
cupancy is the most important when we are close to being both compute
bound and memory bound. We believe this explains why we are not get-
ting closer to the memory bound, and we noted that there were diminish-
ing returns as we applied each optimisation reducing the FP64 instruction
count. If we want further reductions in execution time, we would have
to reduce the memory traffic. Using single-precision floats would have re-
duced the data traffic by almost 50% 11, but it could also increase the error,
and we therefore did not investigate it as we were aiming to optimise the
cell model kernel without compromising the quality of the solution.

11Remember that we still have to read the byte holding the cell type.

63

• Time steps with 11M tetrahedra
• PDE computation ELLPACK with 17 nonzeroes/row
• ODE computation with 19 variables per cell
• Communication via OpenMP and cudaMemcpy
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N Time per step (ms) Cell steps/second

Cell model Diffusion Cell model Diffusion

6 774 958 2.822 1.836 2.401 · 109 3.690 · 109

8 472 263 3.493 2.294 2.425 · 109 3.693 · 109

9 537 830 3.948 2.583 2.416 · 109 3.693 · 109

10 033 105 4.144 2.717 2.421 · 109 3.693 · 109

14 007 495 5.799 3.791 2.416 · 109 3.695 · 109

Table 6.4: Performance for five different meshes using a single V100.

GPUs Time (s) Speedup Scaling efficiency Rel. time
GPUs

Tachieved

Tmemory bound

1 400.098 1.000 1.000 1.000 1.156
2 208.500 1.919 0.959 1.042 1.205
4 105.570 3.790 0.947 1.055 1.220
8 53.800 7.437 0.930 1.076 1.244

16 28.160 14.208 0.888 1.126 1.302

Table 6.5: Multi-GPU scaling on the DGX-2. N = 11 688 851 and the
number of time steps is 50 000. Tmemory bound = 349.8 s

GPUs is the lower bound on
the execution time due to memory bandwidth.

0, as we saw performance reductions when using both sockets, which we
believe were caused by the CUDA runtime having to synchronise across
both sockets. With 16 GPUs, the main loop finished in 32 seconds without
pinning any threads, and in 28.2 seconds with all threads pinned to socket
0. Since we don’t make use of the memory bandwidth on the host side,
there are no disadvantages to pinning all threads to the same socket.

Table 6.6 shows the performance when using 1, 2, 4, and 8 GPUs on
bigfacet. We pinned the threads to the same socket here too.

For both systems, we achieved quite good scaling. From profiling, we
saw no signs of being communication bound, and we believe the slight
degradation in efficiency as we scale to multiple GPUs can be explained
from the suboptimal scaling in computational efficiency that we discussed
in Section 6.3. With 16 GPUs on the DGX-2, the time per step was
28.16 s
50 000 ⇡ 563 µs, far above the worst case communication time we derived
in Section 6.1.2, Tworst case

comm DGX-2 ⇡ 65 µs. On bigfacet, the worst case
communication time is nearer the achieved time, with each time step taking
91.35 s
50 000 ⇡ 1.827 ms, which is still well above the worst case communication
time, Tworst case

comm bigfacet ⇡ 1.077 ms.

If we assume that the cell steps per second is constant in N for the PDE
kernel, and that there is no dynamic load imbalance due to the differing
code paths in the cell model kernel, we would expect the increase in relative

72

• Strong scaling good but not perfect
• Major impediment: not enough work per GPU
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LGE MRI

Infarct 
Segmentation

Ventricular 
Segmentation

Virtual Heart Model Creation

In-Silico 
Stimulation 
to induce 
ArrythmiaUltimate Goal: 

real-time simulation



Communication Loop:  can we simplify this ? 
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for(int i=0; i<count; i++) {
for(int j=0; j<count; j++) 

if(i != j)
cudaMemcpyAsynch(sep[j][i],&sep[i][j], 
sepsize[i][j], cudaMemcpyDeviceToDevice,stream1);

}

• Each GPU sends and receives data from all other GPUs
• Such an All-to-All communication pattern is common
• Can we get a library implementation for this ?   



NCCL – The easy way out ?  
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AllReduce
Broadcast
Reduce
AllGather
ReduceScatter

• NVIDIA NCCL implements collective communication
• Mostly aimed at deep learning
• Has been around for years, but All-to-All is still missing



References

42
Johannes Langguth, Geilo Winter School 2020

Langguth, J., Sourouri, M., Lines, G. T., Baden, S. B., & Cai, X. (2015). Scalable heterogeneous CPU-
GPU computations for unstructured tetrahedral meshes. IEEE Micro, 35(4), 6-15.

Arevalo, H. J., Vadakkumpadan, F., Guallar, E., Jebb, A., Malamas, P., Wu, K. C., & Trayanova, N. A. 
(2016). Arrhythmia risk stratification of patients after myocardial infarction using personalized heart
models. Nature communications, 7(1), 1-8.

Credit: Lecture contains NVIDIA material available at https://developer.nvidia.com/cuda-zone
Image source: wikipedia.org, https://www.openmp.org/

https://developer.nvidia.com/cuda-zone

