GPU Computing with CUDA (and beyond)
Part 3: Programing Multiple GPUs

- e
Jalannes Dangguth
Simufla ResearclFLaboratory

DGX-2: Lots of GPUs 1n one Box

16 NVIDIA V100 Volta GPUs
16x 32 GB RAM

300 GB/s between GPUs

2 Intel Skylake Xeon CPUs

Johannes Langguth, Geilo Winter School 2020

DGX-2: Lots of GPUs 1n one Box

JiCRUz g

GPU
jiicpuzy

GPUs have 300 GB/s to NVSwitch crossbar = e

Bisection bandwidth: 2.4 TB/s

Johannes Langguth, Geilo Winter School 2020

DGX-2: Lots of GPUs 1n one Box

FP64 throughput Memory bandwidth
Device type TFLOPS Ratio of total GB/s Ratio of total
CPUs 2.07 0.016 140 0.010
GPUs 130.88 0.984 14192 0.990
Total 132.95 1.000 14332 1.000

Johannes Langguth, Geilo Winter School 2020

A Note on Memory Bandwidth: STREAM

e Attainable memory bandwidth is lower than the max
 Asimple benchmark gives a realistic upper bound

void tuned STREAM Triad (STREAM TYPE scalar) ({
ssize t j;
#pragma omp parallel for
for (3=0; j<STREAM ARRAY SIZE; j++)
aljl b[j]+sca1ar*c[j]

Johannes Langguth, Geilo Winter School 2020

A Note on Memory Bandwidth: STREAM

e Attainable memory bandwidth is lower than the max
 Asimple benchmark gives a realistic upper bound

void tuned STREAM Triad (STREAM TYPE scalar) ({

ssize t j;
#pragma omp parallel for

for (j=0; j<STREAM ARRAY SIZE;
aljl b[j]+sca1ar*c[j]

}

Some numbers: STREAM
Xeon Platinum 8160 223 GB/s
Pascal P100 557 GB/s

Volta V100 855 GB/s

Johannes Langguth, Geilo Winter School 2020

Max

238 GB/s
720 GB/s
900 GB/s

DGX-2: Lots of GPUs 1n one Box

Rather than expanding the role of the CPU, make sure

CPU doesn’t become a bottleneck
300 GB/s between GPUs is faster than almost all CPUs
We need to keep data on the GPUs as long as possible

Johannes Langguth, Geilo Winter School 2020

How to program for a DGX-2

Some helpful functions:

cudaGetDeviceCount (int *count)

cudaSetDevice (int device)

cudaGetDevice (int *device)

cudaGetDeviceProperties (cudaDeviceProp *prop, int device)

We can launch a kernel on each GPU with:

int *count;
cudaGetDeviceCount (count) ;
(i=0; i<count; i++) {
cudaSetDevice (1) ;
add<<<n,128>>>(d a[i], d b[i], d c[i])

Johannes Langguth, Geilo Winter School 2020

How to program for multiple GPUs

We can launch a kernel on each GPU with:

int *count;
cudaGetDeviceCount (count) ;
(1=0; i<count; i++) {
cudaSetDevice (1) ;
add<<<n,128>>>(d a[i], d b[i], d c[i])

Launching Kernels is not enough. We also need
to communicate with the GPUs.

Johannes Langguth, Geilo Winter School 2020

How to program for multiple GPUs

Remember that we also need to copy data to and from the GPUs:

int *count;
cudaGetDeviceCount (count) ;

(1i=0; i<count; i++) {
cudaSetDevice (i) ;
cudaMemcpy (d a[i] ,a[i], size, H2D);
cudaMemcpy (d b[i] ,b[i], size, H2D);
add<<<n,128>>>(d a[i], d b[i], d c[i])
cudaMemcpy (c[i] ,d c[i], size, D2H);

Now we have a problem....

10

Johannes Langguth, Geilo Winter School 2020

How to program for multiple GPUs

Maybe we can launch kernels on all GPUs and then collect the results:

(i=0; i<count; i++) {
cudaSetDevice (1) ;
cudaMemcpy (d a[i] ,a[i], size, H2D);
cudaMemcpy (d b[i] ,b[i], size, H2D);
add<<<n,128>>>(d a[i], d b[i], d c[i])~;

(i=0; i<count; i++) {
cudaSetDevice (1) ;
cudaMemcpy (&c[i] ,d c[i], size, D2H);

11

Johannes Langguth, Geilo Winter School 2020

How to program for multiple GPUs

Maybe we can launch kernels on all GPUs and then collect the results:

(1i=0; i<count; i++) {
cudaSetDevice (1) ;
cudaMemcpy (d a[i] ,a[i], size, H2D);
cudaMemcpy (d b[i] ,b[i], size, H2D);
add<<<n,128>>>(d a[i], d b[i], d c[i])~;

(i=0; i<count; i++) {
cudaSetDevice (1) ;
cudaMemcpy (&c[i] ,d c[i], size, D2H);

Now the kernels run in parallel, but the Memcpy is still sequential.

12

Johannes Langguth, Geilo Winter School 2020

Asynchronous Operation in CUDA

We need to take a closer look at things here:

cudaMemcpy (d b[i] ,b[i], size, H2D);

cudaMemcpy is synchrounous for the host.
CPU will wait until copy is done.

Johannes Langguth, Geilo Winter School 2020

13

Asynchronous Operation in CUDA

We need to take a closer look at things here:

cudaMemcpy (d b[i] ,b[i], size, H2D);

cudaMemcpy is synchrounous for the host.
CPU will wait until copy is done.

add<<<n,128>>>(d a[i], d b[i], d c[i])

Kernel launch is asynchrounous for the host. CPU will continue
immediately (unless CUDA LAUNCH BLOCKING = 1).

Johannes Langguth, Geilo Winter School 2020

14

Asynchronous Operation in CUDA

add<<<n,128>>>(d a[i], d b[i], d c[i])

Kernel launch is asynchrounous for the host. CPU will continue
immediately.

cudaMemcpy (c[i] ,d c[i], size, D2H);

In our examples, kernel launch is followed by cudaMemcpy, so the
CPU waits again.

Let’s enable concurrent transfers !

15

Johannes Langguth, Geilo Winter School 2020

Using cudaMemcpyAsynch

(1=0; i<count; i++) {
cudaSetDevice (1) ;
cudaMemcpyAsynch(d a[i] ,a[i], size, H2D);
cudaMemcpyAsynch(d b[i] ,b[i], size, H2D);
add<<<n,128>>>(d a[i], d b[i], d c[i]):;
cudaMemcpyAsynch(c[i] ,d c[i], size, D2H);

Does this work ? What happens to the calls on the GPU ?

16

Johannes Langguth, Geilo Winter School 2020

CUDA Streams

All calls to the GPU are executed in FIFO queues called Streams
By default, only one default stream, the default stream 0
Therefore, cudaMemcpyAsynch happen one after the other
on the GPU

Problem: tell CPU that GPU is done

17

Johannes Langguth, Geilo Winter School 2020

Using cudaMemcpyAsynch

(1=0; i<count; i++) {
cudaSetDevice (1) ;
cudaMemcpyAsynch(d a[i] ,a[i], size, H2D);
cudaMemcpyAsynch(d b[i] ,b[i], size, H2D);
add<<<n,128>>>(d a[i], d b[i], d c[i])~;
cudaMemcpyAsynch(c[i] ,d c[i], size, D2H);

(i=0; i<count; 1i++) {
cudaSetDevice (1) ;
cudaStreamSynchronize (0) ;

Synchronize each GPU after computation and transfer.
Alternative: cudaDeviceSynchronize () ;

18

Johannes Langguth, Geilo Winter School 2020

Back to our Application

|
Split domain into one part per GPU

19

Johannes Langguth, Geilo Winter School 2020

Data Exchange

U, K, and W need to exchange data with GPU 1

20

Johannes Langguth, Geilo Winter School 2020

Data Exchange

sep[0][1]

sep[1](0]

V[0] V[1]

Replicated vector means that offsets never change.

We only copy newly computed data to update.

Let sep[0][1] be the offset of the separator between 0 and 1.
21

Johannes Langguth, Geilo Winter School 2020

Data Exchange

U, K, and W need to exchange data with GPU 1
U, K, and W form a separator (need to reorder in one block)
We can use device to device memcpy

(1=0; i<count; i++) {
cudaSetDevice (1) ;
computeNewTimeStep<<<n,128>>>(A,I,D,V);
(j=0; j<count; j++)
(i '= 3)
cudaMemcpyAsynch (V[1i] [sep[1] []J]],VI[i] [sep[i] []]],
sepsize, cudaMemcpyDeviceToDevice) ;

Target device is found automatically through
address of V[i] [sep[i] [j]] in Unified Virtual Adressing

22

Johannes Langguth, Geilo Winter School 2020

Unified Virtual Adressing

No UVA: Multiple Memory Spaces UVA: Single Address Space
System GPUO GPU1 System GPUO GPU1
Memory Memory Memory Memory Memory Memory

0x0000 0x0000 0x0000 0x0000
OXFFFF OXFFFF OXFFFF i

| | | | N 4
_l ‘ n n(“.e _l “ “PC'-Q

A single adress space among CPU and GPUs.

23

Johannes Langguth, Geilo Winter School 2020

Data Exchange

Need to make sure transfers are completed:

(1=0; i<count; i++) {
cudaSetDevice (1) ;
computeNewTimeStep<<<n,128>>>(A,I,D,V);
(j=0; j<count; j++)
(1 !'= 3J)
cudaMemcpyAsynch (V[i] [sep[1] []J]],V[i] [sep[i][]]],
sepsize, cudaMemcpyDeviceToDevice) ;

(i=0; i<count; i++) {
cudaSetDevice (1) ;
cudaStreamSynchronize (0) ;

24

Johannes Langguth, Geilo Winter School 2020

Improved Data Exchange

Data exchange works, but it has several drawbacks:

 Computation has to wait

e Communication may be very unbalanced
 We have to wait for the slowest

e The more GPUs, the higher the overhead

How can we overlap communication and computation ?

With more streams!

Johannes Langguth, Geilo Winter School 2020

25

Communication / Computation Overlap

(i=0; i<count; i++) {
cudaSetDevice (1) ;
cudaStream t streaml, stream2;
cudaStreamCreate (&streaml) ;
cudaStreamCreate (&stream?2) ;

computeNewTimeStepSEP<<<k,128,0,streaml>>>(A,I,D,V);
computeNewTimeStepMAIN<<<n,128,0,stream2>>>(A,I,D,V) ;
(j=0; j<count; Jj++)
(1 '= 3)
cudaMemcpyAsynch (V[1] [sep[i] [J]],VI[i][sep[i][]]],
sepsize, cudaMemcpyDeviceToDevice,streaml)

This should put the main computation and memcopy in
different streams, but....

26

Johannes Langguth, Geilo Winter School 2020

Communication / Computation Overlap

(1i=0; i<count; i++) {

cudaSetDevice (1) ;

cudaStream t streaml, stream2;

cudaStreamCreate (&streaml) ;

cudaStreamCreate (&stream2?2) ;

computeNewTimeStepSEP<<<n,128,0,streaml>>>(A,I,D,V) ;

computeNewTimeStepMAIN<<<n,128,0,stream2>>>(A,I,D,V);
(j=0; j<count; j++)
(i '= 3)
cudaMemcpyAsynch (V[i] [sep[i] [j]1]1,V[i]l[sep[i]l []]1],
sepsize, cudaMemcpyDeviceToDevice, streaml)

Each CUDA context needs its own streams. Easy to fix but
messy to write. Also, each Memcpy can use its own stream.

27

Johannes Langguth, Geilo Winter School 2020

OpenMP for Multi-GPU Control

* OpenMP is a C/C++/Fortran language extension.
e OpenMP is primarily meant to make multicore programing.
* Using OpenMP to create has multiple advantages

1. Code becomes easier to read

2. CPU reacts faster to GPU events

3. Modern CPUs have little memory bandwidth per core

OpenMP

Enabling HPC since 1997

28

Johannes Langguth, Geilo Winter School 2020

OpenMP for Multi-GPU Control

OpenMP forks the master thread to create parallel regions.
An OpenMP thread is an OS thread, not a CUDA thread.

We should have at least one core per GPU (physical/virtual).
We can declare private variables inside a parallel region.
Every OpenMP thread will have a copy of the variable.

OpenMP

Enabling HPC since 1997

29

Johannes Langguth, Geilo Winter School 2020

OpenMP for Multi-GPU Control

omp set num threads(count);
#pragma omp parallel
{
int 1 = omp get thread num() ;
cudaSetDevice (1) ;
double *V;
cudaMalloc ((void **) &V, n*sizeof (double)) ;
cudaStream t streaml, stream2;
cudaStreamCreate (&streaml) ;
cudaStreamCreate (&stream2?) ;
computeNewTimeStepSEP<<<n,128,0,streaml>>>(A,I,D,V);
computeNewTimeStepMAIN<<<n,128,0,stream2>>>(A,I,D,V) ;
for (int j=0; j<count; j++)
if(i '= j)
cudaMemcpyAsynch (V[isep[i][]j]],VIsep[1i][]]l],
sepsize, cudaMemcpyDeviceToDevice, streaml)
cudaDeviceSynchronize () ;

Johannes Langguth, Geilo Winter School 2020

One more Problem: Warps

V[9]t+1 = A
A
A

Rowwise computation is possible, but not coalesced.
Columnwise also allows FMA

9,0
9,1

9,2

9,0]]
9,1]]

9,2

¢t
¢t

Jt + DI9] * V(9]

Johannes Langguth, Geilo Winter School 2020

31

One more Problem: Warps

Compute V[k];; = V[k]s1 + A[k,0] * V[I[k,0]]; for 32 rows at
once. Then move to column 1.

| A Vieg

34

Johannes Langguth, Geilo Winter School 2020

One more Problem: Warps

Compute V[k];; = V[k]is1 + A[k,1] * V[I[k,1]]; for 32 rows at
once. Then move to column 2.

:
E

| A Vieg

35

Johannes Langguth, Geilo Winter School 2020

One more Problem: Warps

Compute V[k];; = V[k]is1 + A[k,0] * V[I[k,0]]; for 32 rows at
once. Then move to column 1.

BEREREEEERI

>
<

t+1

Johannes Langguth, Geilo Winter School 2020

36

LYNX Performance Analysis on DGX-2

P100 V100
Tr (achieved time) 7.60ms 4.20 ms
Tgmemory bound 5.64ms 3.55ms
compute bound
TRunoptimised 745 ms 4.34 ms
compute bound
TRoptimised 522ms 3.03 ms

Tgmemory bound /() 74D 0.845
Tpeomputebound ;g g0 9 701

optimised

e Time steps with 11M tetrahedra

 PDE computation ELLPACK with 17 nonzeroes/row
* ODE computation with 19 variables per cell

e Communication via OpenMP and cudaMemcpy

37

Johannes Langguth, Geilo Winter School 2020

LYNX Scaling Analysis on DGX-2

GPUs Time (s) Speedup Scaling efficiency Rgli,%rg‘e Tmzfc}::;ind
1 400.098 1.000 1.000 1.000 1.156

2 208.500 1.919 0.959 1.042 1.205

4 105.570 3.790 0.947 1.055 1.220

8 53.800 7.437 0.930 1.076 1.244

16 28.160 14.208 0.888 1.126 1.302

Strong scaling good but not perfect
Major impediment: not enough work per GPU

Johannes Langguth, Geilo Winter School 2020

38

Virtual heart Arrhythmia Risk Predictor (VARP)
Virtual Heart Model Creation Infarct

Segmentation

LGE MRI Ventricular In-Silico
Segmentation Stimulation
to induce

Ultimate Goal: Arrythmia

real-time simulation gv

Johannes Langguth, Geilo Winter School 2020

Communication Loop: can we simplify this ?

for(int i1i=0; i<count; i++) {
(j=0; j<count; j++)
(1 !'= 3)
cudaMemcpyAsynch (sep[j] [1], &sep[i]l[]],
sepsize[i] [j], cudaMemcpyDeviceToDevice,streaml) ;

e Each GPU sends and receives data from all other GPUs
* Such an All-to-All communication pattern is common
 Can we get a library implementation for this ?

40

Johannes Langguth, Geilo Winter School 2020

NCCL - The easy way out ?

NCCL
AllReduce
GPUO GPUT Broadcast
Reduce
ReduceScatter

* NVIDIA NCCL implements collective communication
 Mostly aimed at deep learning

* Has been around for years, but All-to-All is still missing

41

Johannes Langguth, Geilo Winter School 2020

References

Langguth, J., Sourouri, M., Lines, G. T., Baden, S. B., & Cai, X. (2015). Scalable heterogeneous CPU-
GPU computations for unstructured tetrahedral meshes. IEEE Micro, 35(4), 6-15.

Arevalo, H. J., Vadakkumpadan, F., Guallar, E., Jebb, A., Malamas, P., Wu, K. C., & Trayanova, N. A.
(2016). Arrhythmia risk stratification of patients after myocardial infarction using personalized heart
models. Nature communications, 7(1), 1-8.

Credit: Lecture contains NVIDIA material available at https://developer.nvidia.com/cuda-zone
Image source: wikipedia.org, https://www.openmp.org/

42

Johannes Langguth, Geilo Winter School 2020

https://developer.nvidia.com/cuda-zone

