WHEN TRUST MATTERS

Large Volume Liquid Hydrogen Releases

Key results and outcome of modelling exercises

Dan Allason*, Ann Halford, Jan Stene: DNV

* Presenting

Introduction

https://www.vegvesen.no/fag/trafikk/ferje/utviklingskontrakt-hydrogen/testing/

• Project executed by

Forsvarets forskningsinstitutt Norwegian Defence Research Establishment

Statens vegvesen

(Norwegian Public Roads Administration)

- Need for large scale data on LH2 release phenomena for model development and validation
 - 'Outdoor Releases'
 - Including preliminary modelling exercise (Ann and Jan)
 - 'Closed Room Releases'
- Today:
 - Experimental Arrangements and methods used
 - Programme Details
 - Results by phenomenon
 - Introduction to modelling

Experimental Arrangement

Experimental Arrangements: Bulk LH₂ Delivery

Experimental Arrangements: LH₂ Supply Pipework

Experimental Arrangements: LH₂ Supply Pipework

- 2" pipe inside 4" pipe
- Vacuum insulated
- Convoluted section for expansion / contraction
- Insulated joints with P, T tapping

Experimental Arrangements: Open Releases

Experimental Arrangements: Open Releases, Near-Field Array

Experimental Arrangements: Open Releases, Field Array

Experimental Arrangements: Open Releases, Field Array

• E.g. Test01

Method

- Purge and cool pipe:
 - $\bullet \ \mathsf{N}_2 \mathop{\rightarrow} \mathsf{LN}_2 \mathop{\rightarrow} \mathsf{He}_2 \mathop{\rightarrow} \mathsf{H}_2 \mathop{\rightarrow} \mathsf{LH}_2$
- Remotely operated from outside Exclusion Zone
- Set Tanker pressure then isolate PBU

Outdoor Programme

- Variants in:
 - Orientation
 - Ignition Yes/No
 - Initial Tanker Pressure
 - Run Time
 - Wind Speed / Direction

est o	Release Orientation	Ignition	Initial Tanker Pressure (barg)	Outflow (kg/min)	Run time (min)	Wind Direction	Observations
	Vertical Downwards	No	2	13.5	13	W-WSW	First test performed at pressure as received.All instrumentation in original positions
	Vertical Downwards	No	6	28.2	8	E-ENE	 Easterly wind present, field array stands repositioned to the West and to front of ISO container. Tanker initial pressure increased to achieve higher flow rate (6 barg on tanker prior to release)
	Vertical Downwards	No	10	43.8	15	W-WSW	 Increase tanker initial pressure to 10 barg to achieve higher flow rates Back on Westerly wind, instrument stands on West re-positioned to R100 m on East.
	Horizontal	No	10	49.7	6	W-WSW	 Repeat of Test03 but with a horizontal orientation, co-flowing with wind
	Vertical Downwards	Yes	10	42.9	6	W-WSW	 Repeat of Test02 but ignited Suspected voltage interaction between ignitors and release valve. Release had to be re-initiated and left to run again for 2 minutes before ignition at 18m downwind.
	Horizontal	Yes	10	49.9	3	W-WSW	 Repeat of Test04 but ignited Ignited on first firework (30 m downwind of release point)
	Vertical Downwards	No	0.8	9.7	8	W-WSW	Final release to empty tanker at saturation pressureHeavy rain present

Videos

Ground Level

Downwards

Horizontal

Above

Outflow / Flashing

Schematic experimental set up: overview

DNV

Outflow / Flashing

- Both modelling exercises were able to reproduce the measured mass outflow using only the measured pipeline pressures and knowledge of the geometry and saturation conditions. Using reasonably broad averaging and assumptions on tanker start conditions (i.e. same temp as first test but sub-cooled by PBU)
- Mass outflow rates up to 50 kg.min⁻¹ were achieved.
- The liquid / vapour fractions along the pipe during releases were calculated based on the pressure decay and assuming isenthalpic expansion. Releases in all experiments produced high liquid mass fractions (i.e. low mass flashing) with experiments being driven above saturation pressure in the tanker producing higher liquid mass fractions (i.e. little or no flashing in the pipe).

From Experiment: Outflow

- Pick averaging period
- 100-500 seconds here

P01

P02

P03

All Fluid Pressure / Temperature

PO4 - - - PT 01 - - · PT 02 - - · PT 03 - - · PT 04

Mass I	H2 released				
Sensor	Average	Max	Min	STDEV	units
Mass LH2 released	-	-0.060	-0.253	-	Te
P01	1.07	1.48	0.78	0.20	Barg
P02	1.03	1.43	0.73	0.20	Barg
P03	0.95	1.35	0.61	0.19	Barg
P04	0.87	1.27	0.48	0.19	Barg
PT_01	-231.3	-230.5	-232.3	0.3	°C
PT_02	-237.8	-237.5	-238.1	0.2	°C
PT_03	-239.3	-238.5	-239.9	0.3	°C
PT_04	-236.0	-233.8	-238.1	0.9	°C
MassFlow	0.473			kg/s	
Wind_Direction_High	81.9	112.8	41.9	10.4	0.0
Wind_Direction_Low	82.7	118.6	46.1	12.2	Deg
Wind_Speed_High	4.1	6.2	2.4	0.8	m/s
Wind_Speed_Low	3.9	7.7	1.6	1.0	m/s

Vapour Quality: FROST

Table 1: Conditions in the pipeline at 100 seconds

Parameter	Location					
	P01	P02	P03	P04		
Pressure (barg)	0.342	0.332	0.277	0.241		
Temperature (K)	21.32	21.30	21.15	21.05		
Vapour quality (mass fraction)	0.107	0.108	0.112	0.115		
Vapour fraction (volume fraction)	0.828	0.830	0.842	0.849		

Parameter	Location					
	P01	P02	P03	P04		
Pressure (barg)	0.263	0.245	0.205	0.175		
Temperature (K)	21.11	21.06	20.95	20.86		
Vapour quality (mass fraction)	0.113	0.115	0.118	0.121		
Vapour fraction (volume fraction)	0.845	0.848	0.857	0.862		

Table 2: Conditions in the pipeline at 800 seconds

- Assuming saturation conditions in the pipe
- Test without PBU gives 11-12% of the mass as vapour at the end of the supply pipe

Vapour Quality: FROST

|--|

Parameter	Location					
	P01	P02	P03	P04		
Pressure (barg)	1.651	1.605	1.527	1.442		
Temperature (K)	24.00	23.92	23.79	23.64		
Vapour quality (mass fraction)	0.033	0.036	0.041	0.047		
Vapour fraction (volume fraction)	0.406	0.432	0.475	0.517		

Parameter	Location					
	P01	P02	P03	P04		
Pressure (barg)	0.791	0.751	0.674	0.605		
Temperature (K)	22.39	22.30	22.13	21.97		
Vapour quality (mass fraction)	0.091	0.094	0.100	0.105		
Vapour fraction (volume fraction)	0.752	0.763	0.782	0.798		

• With PBU – vapour fraction smaller

Outflow: FROST

• Using pressure drop along pipeline

OR

Phast liquid fraction predictions (averaged)

Liquid fraction of hydrogen predicted by Phast

- Standard Phast leak model
- Match Phast and experimental release rates
- Use Phast to deduce liquid fraction
- Indicates 90% or more liquid mass fraction at P04 for all cases

Flow rates: experiments vs Phast predictions

- Standard Phast leak model
- Averaged pressure at P04
- Saturation temperature
- Assume liquid fraction 1.0
- Flow rate predictions: Generally good agreement

Pooling / Rainout

From experiment Pooling / Rainout

- Surface temperature measurements show evidence of LH₂
 - Difficult to distinguish between 2-phase and actual pool
 - Release in this example (Test02) stops circa 560 seconds
 - Enduring L-Air components ~80 seconds after release
 - No LH_2 evidence beyond 0.5m from release
- No evidence of rainout in horizontal releases

-20mm Concrete Temperature

From FROST Pooling / Rainout

- Higher predicted LH₂ pool radius than observed
- Assume 85% by mass hitting ground
- Concrete responding slower in model than experiment

25 DNV ©

DNV

PHAST How much LH2 rains out?

Liquid fraction of hydrogen predicted by Phast

- Physical process:
 - Flashing
 - Air entrained
- Vertical releases T01 to T05 all predicts more than 60% of the liquid to hit the test pad (rainout)
- Horizontal release T04 and T06: no rainout

Dispersion / LFL limits

From experiment: Dispersion, LFL Limits

30m Radius, 1 m and 1.8 m high Field Temperature

From experiment: Dispersion, LFL Limits

- Generally:
 - Increased concentration → decreased temperature
 - Higher concs at higher positions 50 and 100m
 - Not so at 30m
 - LFL not exceeded in downward past 30m

From experiment: Dispersion, LFL Limits

- Generally:
 - Increased concentration → decreased temperature
 - Lower concs at higher positions 30 and 50m
 - Not so at 100m?
 - LFL not exceeded in horizontal past 50m

From GasVLE: Dispersion, LFL Limits

- GasVLE prediction
 - Does not allow for heat transfer from the ground

Various tests versus Katan corellation

Test03 vs various models / correlations

Thermal Radiation

Thermal Radiation

Thermal Radiation

Seems to fall with r⁻²

35

- Initial fireball ~4-5 times higher flux than steady state
- Curious that radial sensors higher than normal sensors

80

70

10

0

-50

Ω

50

100

150

200

250

300

y = 5m downstream, North and South Radiometers

Explosion Effects

Explosion Effects

Questions?

Thanks for your attention

daniel.allason@dnv.com

www.dnv.com

38 DNV ©

WHEN TRUST MATTERS

DN