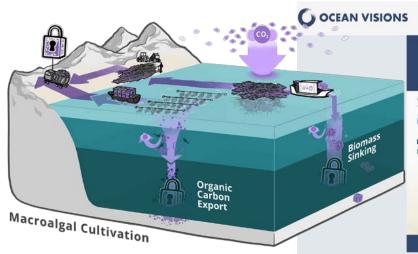


Turn of the tide for seaweeds





Home About Events Our Work News Contact

4 ways Seaweed can help in Climate Mitigation

Seaweed products CO₂ avoided, replacement effect

Seaweed biochar CDR

Biomass sinking CDR

Restoration/ creation of habitat

PURPOSE

Commercial uses


Commercial uses, with Commercial uses, with Commercial uses, with

C-seq. with other marker uses as added value

Target is C-sed & Climate mitigation

Ecosystem Services

Credits

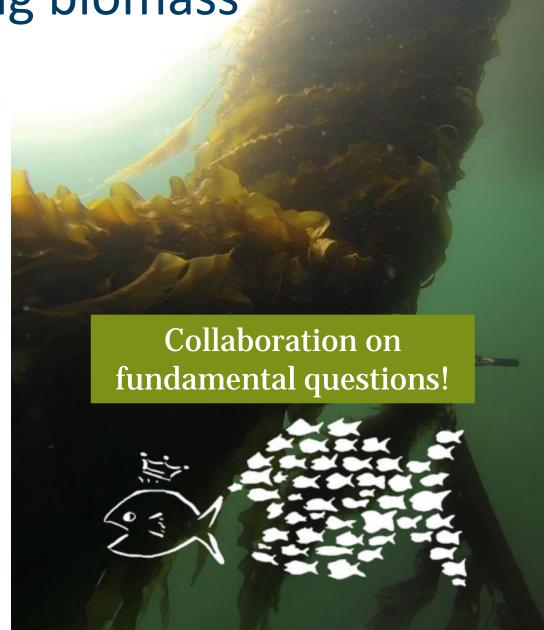
Tradable credits, 'justified' subsidies/grants, tax alleviation, coverage of % operational costs, other forms...
...helping sustainable growth of farming companies

Carbon credits

- C in standing stock
- C-sequestered in sediments
- CDR

Nutrient credits

Bioremediation service


Biodiversity credits

- Increased biodiversity in farms
- Increased fish biomass

Elephant in the room: sinking biomass

- 1. What are the environmental effects/impacts of sinking seaweed biomass?
- 2. What are possible mitigation measures eg. via operations
- 3. What are the thresholds above which impacts are unacceptable and/or not possible to mitigate?
- 4. Technology needs for ongoing monitoring & in-situ trials (opportunity to develop NEW methods, automated)
- 5. Opportunity to help industry SCALE up

PhD

Quantify and evaluate the role of seaweed farms in carbon capture and sequestration via select passive and active processes.

ttps://www.eu-fticr-

NTNU

2021-2024 Seaweed CDR Algae4Clay Seaweed **Carbon Links Environmental** cultivation Oceans 2050 monitoring industry Monitare Macrosea Kelppro Biogeochemistr Link to projects Blue Carbon **SINTEF**

Research approach

1. Carbon capture & losses from farm

2. DOC/ POC production in *situ*

7. Case study: extend harvest season and optimize yields for high value applications AND carbon removal

3. DOM characterization (lab)

4. Kelp-C: how labile/refractory

8. Summarize the potential, C-budgets, credits, recommendations on risks

6. Degradation of kelp-C in deep sea conditions → Environmental impact

New installation in Skarvøya

The potential is real!

...question is how and how much
The science is immature and must catch up!

Acknowledgements

ONTNU

Jorunn Skjermo
Silje Forbord
Åsmund Johansen
Ole Jacob Broch
Aleksander Handå

Murat Ardelan

Maria Guadalupe Digernes

Mathew Avarachen

Advisors and collaborators

Geir Johnsen (NTNU)
Kasper Hancke (NIVA)
Reinhold Fieler (Akvaplan NIVA)
Dorte Krause-Jensen (AU)

Diogo Raposo (SES) Andreas Lavik (SES) Maren Sæther (SES) David Aldridge (SES)

Luiza.Neves@sintef.no (+47) 919 070 25