

MATESA MEETING OSLO, NORWAY, 16 JUNE 2016 UPDATE

Energy efficient MOF-based Mixed-Matrix Membranes for CO₂ Capture M⁴CO₂

FP7 project # 608490

1 January 2014 – 31 December 2017

www.m4co2.eu/

M⁴CO₂ project aims

- Developing & prototyping Mixed Matrix Membranes based on highly engineered Metal organic frameworks and polymers (M⁴) for energy efficient CO₂ Capture
 - Power plants and other energy-intensive industries
 - Pre-combustion and post-combustion applications

• Target

- Highly selective high flux membranes
- CO₂ capture meeting the targets of the European SET plan (90% of CO₂ recovery at a cost less than 25€/MWh)
 - Internal target 15 €/ton CO₂ (≈ 10-15 €/MWh)

www.m4co2.eu/

Applications

Pre-combustion CO₂ capture Post-combustion CO₂ capture Exhaust Carbon Other Carbon Gases Dioxide Dioxide Gases Hydro Air Pow Power Air/Oxygen Combustion Combustion/ Oxidisation CO_2 / H_2 mixtures CO_2 / N_2 mixtures CO_2 / CH_4 mixtures **Bio-gas**, natural gas upgrading H₂ selective membranes **CO**₂ selective membranes

www.m4co2.eu

The Challenge

Membrane performances - targets

Breakthrough in membrane technology

Mixed Matrix Membranes (MMMs)

U Delft

Mixed Matrix Membranes (MMMs)

MOFs as fillers

- Molecular sieve properties
- Some MOFs show outstanding
 - CO₂/CH₄ separation properties
- Infinite design possibilities

Good match between filler and matrix is required

Membrane targets

Membrane Generation	Main components		Scolo	Target performance	
			Scale	Pre-combustion	Post-combustion
	Commercial Polymers			300-1000 GPU	500-2000 GPU
			Lab	<i>P_{H2}</i> > 300 Barrer	P _{CO2} > 500 Barrer
M⁴ G-1	MOF nanoparticles		HF	<i>a</i> (H ₂ /CO ₂) > 15	a(CO ₂ /N ₂) > 50
M ⁴ G-2	New functionalized polymers		Lab	<i>P_{H2}</i> > 400 Barrer <i>P_{CO2}</i> > 800 Barrer	
	Compatibilized MOF nanoparticles		PT	<i>a</i> (H ₂ /CO ₂) > 20	<i>a</i> (CO ₂ /N ₂) > 60
M ⁴ G-3	New functionalized polymers		Lak	P _{H2} > 500 Barrer	P _{co2} > 1200 Barrer
	Compatibilized engineered MOF nanoparticles		Lad	<i>a</i> (H ₂ /CO ₂) > 30	a(CO ₂ /N ₂) > 70

>>SET targets

Robeson plot – effect of filler

Targets development M⁴CO₂ components

- Identification of the most interesting MOF polymer couples for their use in M⁴
- MOF tuning at the particle level
 - preparation of MOF nanoparticles
 - MOF surface functionalization: synthesis of core-shell fillers
 - synthesis of hierarchical MOF nano-fillers combining meso and micro-pores
 - control of MOF particles with extreme aspect ratios (lamellae)
- Development of new **high flux polymers** bearing tailored functional groups to optimise polymer-MOF interactions
- The optimization of membrane preparation conditions
 - Flat sheet, lab scale MOF membranes
 - Langmuir-Blodgett model ultra-thin membranes
 - Hollow fiber (HF) M⁴s with thin separating layers for real application
- **Operando studies** Gaining insight into the separation performance and into the physicochemical properties of the new composites under working conditions
- Accurate engineering models based on experimentally determined fundamental parameters to describe permeation through the selected types of M⁴
- The thorough **economic evaluation** and **conceptual process designs** for the real life applications of the new membranes

Breakthrough in membrane technology

WP-2 Polymer development

Post-combustion High-flux polymers

Polyimides of Intrinsic Microporosity Polybenzimidazoles

> Pre-combustion High-selectivity polymers

WP-2 MOF development

2nd generation nanoMOFs

Candidate for 2nd Gen post-combustion which presents good hydrothermal stability and performances under wet conditions

Reflux synthesis in pure water was too difficult to scale-up (low STY)

Optimized reflux synthesis in H₂O/ DMF that yields nanoparticles with good yield (100 nm)

Task 4.3 Membrane performance

Journal of Membrane Science 515 (2016) 45-53

Influence of ZIF-8 particle size in the performance of polybenzimidazole mixed matrix membranes for pre-combustion CO₂ capture and its validation through interlaboratory test

Javier Sánchez-Laínez^a, Beatriz Zornoza^a, Sebastian Friebe^b, Jürgen Caro^b, Shuai Cao^c, Anahid Sabetghadam^d, Beatriz Seoane^d, Jorge Gascon^d, Freek Kapteijn^d, Clément Le Guillouzer^e, Guillaume Clet^e, Marco Daturi^e, Carlos Téllez^a, Joaquín Coronas^{a,*}

^a Chemical and Environmental Engineering Department and Instituto de Nanociencia de Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain ^b Institut für Physikalische Chemie und Elektrochemie, Leibniz Universität, 30167 Hannover, Germany

d Catalysis Engineering-Chemical Engineering Department, Delft University of Technology, 2628 BL Delft, The Netherlands

^e Laboratoire Catalyse et Spectrochimie, ENSICAEN, Université de Caen Normandie, CNRS, 14050 Caen, France

- Paper from 1st R-R testing: allowed to do complete review of the calculation procedures among TUDELFT, LUH and UNIZAR to verify the GS measurements
- Some discrepancies found:
 - unify the way of calculating the membrane performance → better coherence with lower average standard deviations (P and S)
 - Sweep gas has strong influence

CrossMark

^c Johnson Matthey Technology Center, Sonning Common, Reading RG4 9NH, United Kingdom

Flat sheet membrane performance

PIM-1 vs PBI and Matrimid based MMMs

- All PIM-1 membranes surpass the upper-bound (high increase of permeability but reduced selectivity)
- PBI approaches selectivity target

Sabetghadam et al, Adv. Func. Mater. 2016

Reference case

COAL-FIRED IGCC POWER PLANT WITHOUT CO_2 CAPTURE

BASIS OF DESIGN IGCC PLANT WITH PRE-COMBUSTION CAPTURE

2.78 Mt/y of captured CO₂ ?? MW power output

?? % efficiency

Challenge the future 20

PROCESS OPTIONS - MEMBRANE SEPARATION

2-STAGE PROCESSES

- ∞ process options
 - # stages
 - pressures feed, permeate
 - Recycles
 - Recovery of species
- \rightarrow Optimisation problem

TUDelft

Challenge the future 22

PROCESS ECONOMICS (1_{ST} GEN. MEMBRANES)

Designed capture process

- CAPEX 85 M€
- OPEX 25 M€ (excl. electricity)

Cost of captured $CO_2 = 15.8 \in /t$				
Item	Unit	Without capture	With capture	
Net power output	MW	536	489	
Total investment	M€	1148	1233	
Specific investment	€/kW	2141	2522	
Cost of electricity	€/MWh	68.4	80.4	

16.4 €/t 70 bar 18.2 €/t 35 bar

Profitability in 2030 (30€/t CO₂)

- in 2015 not profitable (7 €/t CO₂)
- ROI = 23%
- Payback time = 3.5 years

SENSITIVITY ANALYSIS

Dual-stage membrane system layout

- > Permeate from the 1st stage is recompressed up to 30 bar and sent to the 2nd stage
- > Retentate from the 2nd stage is recirculated back to the 1st membrane stage
- \blacktriangleright Permeate from the 2nd stage is sent to CO₂ compression system

Conclusions – Post combustion 2-stage CC

- Evaluation of opportunities for improving techno-economic performances of dual stage membrane systems, varying the <u>membrane separation properties</u>, <u>pressure ratio</u> and <u>system layout</u>
- □ There exists an optimal pressure ratio, allowing to minimize specific energy requirement (E_{TOT}) and cost of CO₂ capture (c_{CO2})
- □ Energy and economic performances can be further improved eliminating the energy recovery system at second membrane stage and operating with $PR_{MB-1} > PR_{MB-2}$

□ Flue gas from coal-fired power plant

	PR _{MB-1} >PR _{MB-2}		
Membrane type	Polyactive	Improved membrane	
Design conditions	min: Е _{тот} , с _{со2}	min: <i>E_{тот}, c_{co2}</i>	
PR _{MB-1. op}	22.5	15	
<i>E_{τοτ}</i> , kWh/tonne	293	238	
CO _{2. em} , kg/MWh	110.6	104.9	
c _{co2} , €/tonne	24.6	20.6	

□ Flue gas from natural gas boiler

	PR _{MB-1} >PR _{MB-2}		
Membrane type	Polyactive	Improved membrane	
Design conditions	min: <i>E_{тот}, c_{co2}</i>	min: <i>E_{тот}, c_{co2}</i>	
PR _{MB-1 ont}	25	20	
<i>Е_{тот},</i> kWh/tonne	395.5	298.3	
CO _{2.em} , kg/MWh	21	21	
c _{co2} , €/tonne	60.0	49.4	

Hollow Fibre (HF) membranes

As-spun dual-layer layer Inner layer Outer M⁴ layer

As-spun outer M⁴ layer

First performance of M4-HFMs

Single Gas (SG) and Mixed Gas (MG) 50%H₂/50%CO₂ @ 150^oC

Inspiring Business

First performance of M4-HFMs

Single Gas (SG) and Mixed Gas (MG) $50\%H_2/50\%CO_2 @ 150$ °C

Inspiring Business

First performance of M4-HFMs

Single Gas (SG) and Mixed Gas (MG) $50\%H_2/50\%CO_2 @ 150$ °C

Inspiring Business

Performance of M4-HFMs

HFs from TECNALIA Module from UNIZAR Sealed at UNIZAR

Preliminary results

Test confirmation partner

Membranes	Temperature (ºC)	Pressure (bar)	Permeabillity H ₂ (GPU)	Permeabillity CO ₂ (GPU)	Selectivity H2/CO2
5 wt% MOF	150	1	46,2	2,3	20,6
		2	44,6	2,2	20,5
		3	45,1	2,2	21,0
		4	43,0	2,1	20,5

Development of M4HFMs

Thickness as a function of the take-up velocity

- Small influence of the % concentrations tested so far
- Thickness increases with velocity. Very predictable
- Low velocity for thickness lower than 0.5 μm
- Influence of drying temperature to be evaluated

ITM-CNR Istituto per la Tecnologia delle Membrane

Constant velocity dip-coating

Proof of principle – lab scale 'Pull-through coater'

The fiber is fixed between the clamps of a tensile tester and is pulled out from the polymer solution at a controlled speed.

This automatic device, having a working height of ca. 1 meter, can be applied to coat

- fibers with a length even larger than 50 cm, or continuously
- working at a speed that can be varied in a quite large range (e.g., 1 - 500 mm/min).

Flux - Selectivity improvements

High flux polymers:

- Selective fillers
 - Increased path-lengths
 - tuned aspect ratio
 - Adsorption selective

Selective polymers:

- Flux improvements
 - Hollow spheres
 - Mesoporous, good adsorption
- Shorter effective path-lengths

• Percolation membranes

Separation performance

Rodenas et al. Nature Materials 14, 48-55 (2015)

A. Knebel et al, ACS Appl. Mater. Interfaces, 8, 7536, 2016

Aged (3 years) Cu-BDC platelet/Matrimid (15/85 CO₂/N₂ mixed gas @ 25 °C heat treated @ 180 °C)

Membrane (wt%)	<i>∆p</i> (bar)	CO ₂ (Barrer)	N ₂ (Barrer)	α (CO ₂ /N ₂)
0	1	9 ± 0	0.4 ± 0.0	23± 1
8	1	18 ± 0	0.3 ± 0.0	57 ± 1
8	2	14 ± 0	0.3 ± 0.0	46 ± 2

- Permeability (low) and selectivity both improved
- Stable system

Rodenas et al, Nat. Mater. 2015

M⁴CO₂ status – June 2016

- Project runs in-line with planning
- Process designs guide development direction
 - Selectivity strongest sensitivity
- 1st and 2nd generation materials identified
 - Development lamellar and layered 3rd generation materials
 - MOF stabilizes M4's (3 year)?
- Membrane testing uniform
- Hollow fibre membrane manufacture
 - Pre-combustion selectivity specs reached
 - Films and HF differ in performance
- Supporting studies provide
 - Insight in performance, polymer-MOF interaction, adsorption and diffusion
 - New experimental and modeling techniques in-situ performance studies