

January 2016

Geilo winter School – Scientific Visualization

Ingrid Hotz – Linköping University

2

Tensor field visualization – My view on the field From the general perspective ...

Ingrid Hotz

... to digging in the sand

Ingrid Hotz

3

Tensor field visualization - My view on the field

January 2016

Geilo winter School – Scientific Visualization

Ingrid Hotz – Linköping University

- Tensors are everywhere (Simulations, physical theories)
- Can hardly be seen anywhere nobody cares?

Ingrid Hotz

5

Tensor field visualization – My view on the field Tensors – Why Do We Care?

If you're sitting at a cocktail party with a bunch of engineers, physicists, and mathematicians, and you want to start a heated debate,

Just ask out loud: "What is a tensor?"

- One person will say that, for all practical purposes, a tensor is just a fancy word for a matrix.
- Then someone else will pipe up indignantly and insist that a tensor is a linear transformation from vectors to vectors.
- Yet another person will say that a tensor is an ordered **set of numbers that transform in a particular way upon a change of basis**.
- Other folks (like us) will start babbling about "dyads" and "dyadics."

[R. Brannon, *Functional and Structured Tensor Analysis for Engineers,* UNM Book Draft, 2003]

Tensors – Why Do We Care?

Ingrid Hotz

7

Tensor field visualization – My view on the field

Tensor visualization is field that is still in its infancy (maybe except for Diffusion Tensor Imaging however this does not really happen in the visualization community)

Ingrid Hotz

9

Overview

- Tensors
 As mathematical objects
 As physical descriptors
- II. Some basic visualization methods
- III. Tensor Invariants for feature definition
- IV. The story of a collaboration

I. Tensors as mathematical objects

Tensor field visualization – My view on the field

I Tensors as mathematical objects

V *n*-dim vector space

Second-order tensor T
is a bilinear functionSecond-order tensor T
as lin. operator $T: V \otimes V \rightarrow \mathbb{R}$
 $T(v,w) = w^T \cdot \mathbf{T} \cdot v, \quad \forall v, w \in V, \ \mathbf{T} \in \mathbb{R}^{n \times n}$ $T: V \rightarrow V$
 $T(v) = \mathbf{T} \cdot v, \quad \forall v \in V$ $v_1, v_2 \in V^2 \rightarrow \mathcal{T} \rightarrow T(v_1, v_2) \in \mathbb{R}$ $\mathbf{T} = \begin{pmatrix} t_{11} \cdots t_{1n} \\ \vdots & \ddots & \vdots \\ t_{n1} \cdots & t_{nn} \end{pmatrix}$ This is not a tensor but a matrix
Often a tensor is mixed up with
its representation

Ingrid Hotz

I Tensors as mathematical objects

The tensor is uniquely determined by its action on all unit vectors Rotation, deformation, reflection

Ingrid Hotz

13

Tensor field visualization – My view on the field

I Tensors as mathematical objects

Symmetric tensor

Deformation, reflection – no rotation

I Tensors as mathematical objects

Positive definite, symmetric tensor Deformation – no rotation, no reflection

Ingrid Hotz

15

Tensor field visualization - My view on the field

I Tensors as mathematical objects

I Tensors as mathematical objects

Ingrid	Hotz	
B		

17

Tensor field visualization - My view on the field

I Tensors as mathematical objects

I Tensors as mathematical objects

There are different tensor Decomposition, which are often the basis for visualization methods

- Isotropic scaling, anisotropic deformation (deviator)
- Many different measures for anisotropy available

Ingrid Hotz

19

Tensor field visualization - My view on the field

I Tensors as mathematical objects

Tensor Invariants

Entities that do not depend on the representation Properties inherent to the tensor

Examples

- Eigenvalues
- Determinant
- Trance
- All functions that only depend on the eigenvalues

I Tensor as physical descriptors

Tensor field visualization - My view on the field

I Tensor as physical descriptors

Tensors are everywhere in Physics and Engineering

- Not because the world is linear
- But because linear is simple

First order descriptors of the dependence of two vector fields v, w

\rightarrow first term of the Taylor expansion

 $v(w) = \mathbf{T} \cdot w + \text{higher order terms}$

They provide a more or less good approximation of the reality

I Tensor as physical descriptors

Tensor field visualization – My view on the field

I Tensor as physical descriptors

Stress Tensor

Geo- and Material Sciences

- 1. Solid block, with two applied forces
- 2. Implant design, stress simulation in human bone
- 3. Notched block with external forces

Images: Kratz, ZIB

Ingrid Hotz

I Tensor as physical descriptors

Metric, Curvature, Stress

General Relativity

• Simulation of gravitational field of a rotating black hole, respectively neutron star

Images: Benger, Kratz, ZIB

Ingrid Hotz

25

Tensor field visualization – My view on the field

I Tensor as physical descriptors

Diffusion Tensor – Medicine

- Imaging method: based on magnetic resonance tomography (MRT) measuring the diffusion of water molecules in tissues
- Application: Reconstruction of neural fibers in human brain (tractography)

Textured slice Images: Kratz, Breßler, Hotz, ZIB

3D Fiber tracking

Glyph representations

I Tensor as physical descriptors

Structure Tensor – Image Analysis

Image: Kratz, ZIB

Ingrid Hotz

27

Tensor field visualization - My view on the field

I Tensor as physical descriptors

Different Characters of Tensors - Examples

Describes a deformation

- Positive definite
- E.g. deformation tensor
- Determinant *det*T → volume change

Describes a generator of a deformation

- Indefinite
- E.g. stress tensor (forces/ area)
- TraceT → volume change

Ingrid Hotz

I Tensor as physical descriptors

Tensor Invariants

- Play a fundamental role in the understanding of application specific tensors
- Every application has its own invariants that are especially important. Thy often come with a domain specific language
- ightarrow Relevant invariants should guide the choice of the visualization

Ingrid Hotz

29

II Some basic visualization methods What has visualization currently to offer

II Some basic visualization methods

Common practice

Color Representation of derived scalars, e.g. trace
2D slices and surfaces

Tensor field visualization - My view on the field

II Some basic visualization methods

- Geometric objects representing
 tensor characteristics
- Here: Ellipses
- Most frequently used visualization

The typical glyph: Ellipsoid

Ingrid Hotz

II Some basic visualization methods

Ingrid Hotz

[Schultz2010, Kratz2014] 33

Tensor field visualization – My view on the field

II Some basic visualization methods

	Local Methods - Glyphs			
How should it be represented – general design guidelines				
 Preservation of symmetry e.g. eigenvectors have no orientation, isotropic tensors have not distinguished direction 				
 Continuity similar tensors should have similar glyph representations 				
 Disambiguate tensors with different values should be re 	flected by different glyphs			
 Use glyphs that have been used in the cor 	[Schultz and Kindlmann 2010] nmunity befor			

What should be represented – application specific guidelines

• Use application specific invariants for the design

II Some basic visualization methods

Images: Kratz, Bressler ZIB, Amira

37

Tensor field visualization – My view on the field

II Some basic visualization methods

Particle based and geometric methods on planes, in 3d, on surfaces

[Feng2008]

[Kindlmann2006]

[Kratz2013]

Integral lines similar to

streamlines

II Some basic visualization methods

Tensor lines

Ingrid Hotz

39

Tensor field visualization – My view on the field

II Some basic visualization methods

Tensor lines

Direction field is not orientable. It is not a vector field!!

II Some basic visualization methods

Tensor field visualization – My view on the field

II Some basic visualization methods

Tensor lines – Fiber tracking

Tensors from diffusion MRI

Tracking of neural fibers

- Major tensor lines can be used to approximate fibers
- Line tracing only for regions of high anisotropy

II Some basic visualization methods

Tensor field visualization – My view on the field

II Some basic visualization methods

Textures – Principal directions and values

- Beam bend under its own load.
- Simulation respecting evolving damage, 3 time st
- Data: Louise Kellog University of California.

Data: Louise Kellogg, Department of Geology, University Editornia, Images: Louis Feng UCD.

II Some basic visualization methods

Topology

Topological structure

- Segmentation of domain in areas of uniform directional behavior
- Similar to vector field topology but different basic structures

Ingrid Hotz

45

Topology

Tensor field visualization – My view on the field

II Some basic visualization methods

Topology based Segmentation
 Topology based Textures [Auer2013]
 On Surfac [Auer2012]
 On Surfac [Auer2012]
 Tensor field design [Thang2007]
 Tensor field design [Thang2007]

Ingrid Hotz

II Some basic visualization methods

Some technical stuff	What has been done so far?				
Glyphs from all perspectives					
 Technical generalization of vector field visualization methods 					
• Textures					
Much work on tensor processing					
Interpolation / reconstruction					
Morphology					
• Topology					
What is still missing					
• Applications – link form visualization techniques to physical interpretations					
Notion of features					
Questions					

Ingrid Hotz

47

Tensor field visualization – My view on the field

III Tensor Invariants for feature definition

• **Exploarative framework** supporting multiple applications with different questions

• Structuring the data

- Manage complexity of the data
- Highlight trends
- Point at critical/atypical behavior

III Tensor Invariants for feature definition

Explorative framework supporting multiple applications with different questions
Domain specific feature spaces
Structuring the data

Manage complexity of the data
Highlight trends
Point at critical/atypical behavior

Data atlas using a thumbnail like representation

Ingrid Hotz

Tensor field visualization - My view on the field

III Tensor Invariants for feature definition

 \rightarrow \rightarrow

Tensor is uniquely defined by

- 3 eigenvalues
 - envalues
 - 3 eigenvectors
- point in **'shape-space'**
- point in 'direction-space'

Tensor invariant

Are the language of the applications

Use application specific invariants to parameterize the shape space

- \rightarrow shape descriptors $I_i(\lambda_1, \lambda_2, \lambda_3)$
- → basis for the definition statistic views, glyph design, similarity measure

49

The Stress Tensor and Failure Models

Example for failure analysis in mechanical engineering

 \rightarrow Mohr Circle

Ingrid Hotz

51

Tensor field visualization – My view on the field

III Tensor Invariants for feature definition

Example

• Ordered shape space

$$\lambda_1 \geq \lambda_2 \geq \lambda_3$$

III Tensor Invariants for feature definition

Example – Coulomb failure

Ingrid Hotz

53

Tensor field visualization - My view on the field

III Tensor Invariants for feature definition

Ingrid Hotz

III Tensor Invariants for feature definition

Tensor field visualization – My view on the field

III Tensor Invariants for feature definition

III Tensor Invariants for feature definition

Tensor field visualization – My view on the field

III Tensor Invariants for feature definition

III Tensor Invariants for feature definition

Tensor field visualization – My view on the field

III Tensor Invariants for feature definition

Raw ten	variant Selection (Quest	ion/Task)	Interaction loop #1	Attribute Space	Interaction loop #2	Object Space
diagon	Eigenvalues Shape Space Transformation	Shape Descriptors		Scatterplot Mohr Diagram	-	Raycasting
-	Eigenvectors Grientation	- Directional Invariants		Directional Histogram Directional Scatterplot	create - Mask Volume evaluate -	Glyphs
))	Ċ	Atlas Representatives Statistics		

Ingrid Hotz

III Tensor Invariants for feature definition

Tensor Visualization Driven Mechanical Component Design

or The story of a collaboration

Kratz, Schoeneich, Zobel, Burgeth, Scheuermann, Hotz, Stommel, Pacific Vis 2014

IV Story of a Collaboration

Starting point

- Unspecific goals
- Different language

63

Tensor field visualization – My view on the field

IV Story of a Collaboration

First Experiments

Everybody shows what they have

- Visualization – Framework

Images: Kratz, ZIB, Amira

Ingrid Hotz

65

Tensor field visualization – My view on the field

- Engineering – Product Development Process

IV Story of a Collaboration

First Experiments

 Everybody shows what they have

Tensor field visualization – My view on the field

IV Story of a Collaboration

Hypothesis resulting from first experiments and discussions

- The tensor lines for a stress tensor field are related to the major load paths from the operating loads to the fixation points of a technical part
- Tensor lines can be used to support the design of reinforcement structures

Tensor field visualization – My view on the field

IV Story of a Collaboration

Design of a break lever

- Build reinforcement structure on basis of tensor line visualization
- Combination of an automatic analysis with the expert's knowledge
- Manageable but realistic case

Evaluation

- Comparison to reference structure same volume
- Numerical validation
- Experimental validation

IV Story of a Collaboration

Ingrid Hotz

73

Tensor field visualization - My view on the field

IV Story of a Collaboration

Numerical and experimental tests

- New designs (red, green, yellow)
- Reference geometry (blue)
- → All new geometries performed better as the reference geometry

Tensor field visualization – My view on the field IV Story of a Successful Collaboration

Advances in both fields

Continuing Story

- Many exiting questions and ideas
- Much fun
- Proposal submitted

- Anisotropic Sampling of Planar and Two-Manifold Domains for Texture Generation and Glyph Distribution, Kratz, Baum, Hotz, TVCG, 2013
- Three-Dimensional Second-Order Tensor Fields: Exploratory Visualization and Anisotropic Sampling (phdthesis), Andrea Kratz, 2013
- Visualization and Analysis of Second-Order Tensors: Moving Beyond the Symmetric Positive-Definite Case, Kratz, Auer, Stommel, Hotz, Computer Graphics Forum - State of the Art Reports, 2013
- *Tensor Invariants and Glyph Design*, Kratz, Auer, Hotz, Visualization and Processing of Tensors and Higher Order Descriptors for Multi-Valued Data (Dagstuhl'11), Springer, 2014
- http://www.tensorvis.org/