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Propane dehydrogenation

CATOFIN® process

* chromia catalysts alumina support
e 850K

e 12-15barO,

* <70% conversion
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Atomistic level

Methods:

» Electronic level: Density functional theory (DFT) calculations
 Perdew-Wang 91 functional (GGA)
 DFT+U for the 3d states of Cr, D-J =4 eV
 The Grimme dispersion (D3) correction

» Surface level: Kinetic Monte Carlo modelling

A 25 x 25 lattice with two four types of active sites
(oxidised and reduced surface)

» Using DFT calculated kinetic and TD parameters, 107 events
* Meso- and macroscopic: Kinetic modelling (ODEs)

Model:

 Based on the CATOFIN® process
(chromia catalysts, alumina support, 850 K, 1.2-1.5 bar O,, <70% conversion)

* Bulk a0-Cr,O4 cut along the (0001) surface

* Crtermination - reduced surface, O termination — oxidised surface
* Added dopants to the surface

» 12 alternating layers (6 for O, 6 Cr)

« A 2x2supercell (2a=10.18 A)

« Vacuum in the z direction: 15 A, dipole correction included
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Oxidation state of the surface
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Interconversion between the reduced and oxidised
surface

On the oxidised surface, MvK is possible. Two adjacent H* form H,O* with a surface lattice
oxygen atom, which can desorb, yielding an oxygen vacancy (reduced surface). The
ensuing vacancy can be replenished with CO, (unfavourable), N,O (possible) or O, (when
two are adjacent). W/o an oxidant, the surface gets reduced. Included in the model.

reaction E, (eV) | AE (eV)Y
1| 2H — HO!; + * 1.19 +0.91
2 | HyOf ¢ — HyO(g) + V* 1.36 +1.36 2 H*recombine into H,O* on the ox. surf.
3|V 4+ % — %+ V* 0.63 +0.00 H,O desorption yielding the red. surf.
41 V* 4+ NoO(g) = * + No(g) | 0.73 —1.32
5| V* + COs(g) — * + CO(g) | 273 192.35  Replenishment with N,O
6|2V + Og(g) . O;“ 0.00 _ ()R89 Replenishment with CO,
710y — 2« 0.64 —1.41

Net reactions differ when oxidants are used.
CsHg — CH3CH=CH> + H»
CsHg — CH;C=CH + 2 H,
C3Hg + 202 — CH3CH=CH>» + H-O
CsHg + O — CH5C=CH + 2 H»,0O

This project has received funding from the European U
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Adsorption
Reduced surface (A) Oxidised surface (E)
spec les E surf,dis E dis E-int E ads E surf.dis E dis Eint E ads
C3Hg 0.00 |0.02] —0.38 | —0.36 0.01 |0.01] —0.25 | —0.23

CH3CH=CH, 0.03 |0.02] =050 | -0.45 1.20 268 | —6.88 | =3.00
CH3C=CH 0.04 |0.02] -0.69 | —0.63 3.40 359 | —11.09 | —4.10

CoHg 0.00 ]0.02] -=0.25|-0.23 0.00 ]0.00 | =021 | =0.21
CHy=CH, 0.02 ]0.02]—-0.43|-0.39 1.16 | 245 | —6.50 | —2.89
CH=CH 0.04 0.02 | —0.46 | —0.40 2.78 3.26 | —10.23 | —4.19
CHy 0.00 {0.01|—=0.15| —0.14 0.00 ]0.00 ] —0.11 | —=0.11
H, 0.00 | 0.00| —=0.04 | —0.04 0.00 | 0.00 0.00 0.00
> ) ~
« Propane, ethane, methane é)\@ 65 @Q’ ;\QQ
adsorb negligibly § 6§ £ é’
« CH, with double and triple bonds 50 \5 50 .’Q@
adsorb moderately on the ESS N <
A >~ O
reduced surface and extremely Q\ S & 5\
strongly on the oxidised surface ;SO @ %\ <§
« Oxidised surface expected to be go Q(b @0 ob
more active towards o & s e
dehydrogenation and cracking & O & N
& 3° G

N
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Reaction mechanism

Reaction mechanism:

CH3FH2C
« Two types of elementary reactions: o <C“3FH2C“ " CHMC>
| HCH, CHyCHCH CHyCC
« dehydrogenations (C-H bond) and CH&?HZFH3< CH3+3H‘CH2 CHﬂbCH
« cracking (C-C bond). CH3FH‘CH3< )C CquCHZ
CHCCH;

Vector space for possible
elementary reactions the same on

CHZL'H2 CHCH
the oxidised and reduced surface. /CHskHz < CH,CH >crqc\
CH{CH; CH{CH CHC ac

Reactions that actually happen CHC
differ between the surfaces.

All possible reaction steps were CH CH
calculated on both surfaces. CH, / \CHz / \C

They are to be used for modelling
the effect of the oxidation state.
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Reaction mechanism

« Adsorptions of non-saturated CH, much stronger

« Greater affinity for hydrogen on the oxidised surface, similar
activation barrier

 Lower mobility of H on the oxidised surface (strongly bound)

Reduced surface (4] Oxidized surface (F)

reaction step type E 4 AE T E, AE S
8% Ho(g) + 24 — Ho## ads. 0 —0.04 0 0.00
g4 CaHg(g) + *— CqHg* ads. 0 —0.37 0 —0.23
10% | CH3CH=CHs(g) + * — CH3CHCH," ads. 0 —0.45 0 —3.00
11% | CH,C=CH(g) + * — CH,CCH" ads. 0 —0.61 0 —4.10
12% | CH3CHs(g)+ *— CH3CHs" ads. 0 —0.23 0 —0.21
13% | CHs=CHs(g)+* — CH5CH5" ads. 0 —0.39 0 —2.80
14% | CH=CH(g) + * — CHCH" ads. 0 —0.40 0 —4.19
15% | CHy(g)+*— CHy" ads. 0 —0.14 0 —0.11
16 Ho## 4 0HF dis. 0.54 —0.83 0.58 —3.40
17% | H# 4+ # s # 4 HF diff. 0.61 0 0.94 0

IS This project has received funding
Tran” research and innovation progra




BiZeolCat*?

Reaction mechanism

e Reaction endothermic on the reduced surface and
exothermic on the oxidised surface

e Lower barriers on the oxidised surface

Reduced surface (A4) Oxidised surface (E)

reaction step type E x5 AE S E 4 AE T
18 CqHg* +# — CH3CHoCHo " + HF dehydr. 1.25 +0.85 0.19 —2.64
19 CqHg®™ +# —+ CHqCHCH, " + HF dehydr. 1.27 +0.73 0.11 —2.70
20 CHyCH,CHs* + # — CH;CH,CH* + H#F deep 1.88 +1.59 0.55 —1.88
21 CHqCHoCHo* 4+ # — CHaCHCHo* + H¥ dehydr. 1.37 +0.04 1.76 —2.27
22 CH5CHCH3* +# — CHyCHCH3* + H# dehydr. 0.84 +0.16 0.69 —2.21
23 CH3CHCH3* +# — CH3CCH3 " + H¥ deep 1.74 +1.44 3.57 —2.08
24 CH;CHoCH* +# — CHaCHoC* + H# deep 1.87 +1.62 0.60 +0.45
25 CHaCH2CH® +# — CHaCHCH" + H¥ deep 1.79 —0.64 0.21 —2.16
26 CH3CHCH,* + # — CHqCHCH"* + H# dehydr. 1.42 +0.90 2.14 —1.77
27 CHaCHCH2* +# — CHaCCH2* + H¥ dehydr. 1.22 +0.82 0.23 —1.90
25 CHqCCHg® +# — CHqCCHs * + H¥ deep 0.64 —0.46 0.20 —2.03
20 CH3CH2C* +# — CHaCHC® 4+ H¥ deep 0.30 —0.59 0.21 —2.34
a0 CH;CHCH®* + # — CHaCHC® + H¥ deep 1.98 +1.68 2.40 +0.27
31 CHaCHCH®* + # — CHaCCH* + H¥ dehydr. 1.81 +0.37 0.96 —0.99
a2 CH4qCCHo ™ +# — CH3CCH™ + HF dehydr. 1.31 +0.45 0.83 —0.36
33 CHaCHC® + # — CHaCC*® + H# deep 0.86 —0.62 0.35 —0.90
34 CHqCCH® +# — CHaCC* + H# deep 0.92 +0.69 0.95 —0.36
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Reaction mechanism

» Cracking strongly endothermic on the reduced surface, moderately
exothermic on the oxidised surface

« On average, lower barriers on the oxidised surface

* Only steps with Ea < 3.5 eV shown. Different cracking routes on the surfaces.

Reduced surface (A) Oxidised surface (E)

reaction step type E AE Y E 4 AE T
35 CqHg™ +*—= CH3CHs™ + CHs" cracking 3.23 +1.23 3.02 —2.41
36 CH;CHoCHs"® +* -+ CH3CHS" + CHo " cracking 2.90 +1.92 1.96 —1.11
ar CHsCH2CH2" +* - CHy" + CH2CH=- " cracking 2.32 +0.60 3.156 —1.79
38 CHsCHCHs* +* = CHsCH™ + CHs " cracking 2.95 +2.22 1.83 —1.58
39 CHsCHCH2* +* = CHs~ + CHoCH"® cracking 3.29 +1.44 1.96 —1.28
40 CHsCHCH2* +* =+ CHsCH™ + CH=2 " cracking N/A N/A 0.92 —0.71
4 CH3CCHs™ +* - CHsC" - CHs " cracking 2.55 +2.16 MN/A N/A
42 CHsCH2CH® +* = CHs " + CHoCH”® cracking 3.20 —0.11 2.81 —1.67
43 CHsCHCH® +* —= CHs~ 4+ CHCH” cracking 2.79 +1.26 2.30 —0.52
44 CH3CCHs" +* - CHs* + CHaC" cracking 3.03 +2.24 MN/A N/A
45 CH3CH2C™ +* + CHs* + CHaC" cracking 2.76 —0.11 1.64 —1.76
46 CH3CCH® +* = CHs" + CHC"™ cracking 3.14 +1.46 MN/A N/A
47 CH3CHC® +* = CHs" + CHC"™ cracking 3.13 +0.16 2.66 —0.29
45 CH3CHC® +* =+ CH3CH™ 4+ C~ cracking N/A N/A 0.70 +0.22
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Reaction mechanism

Reduced surface (A) Oxidised surface ()

reaction step type E x5 AE S E 5 AE T
49 CoHg® +# — CHyCHo ™ + H¥ dehydr. 1.42 +0.76 0.28 —2.66
50 CH3CH2* +# — CH2CH2* + H¥ dehydr. 1.42 +0.21 0.92 —2.01
51 CH;CHs " +# — CHaCH* + H7 deep 1.99 +1.72 0.43 —1.87
52 CHoCHo* +# — CHaCH* + H# dehydr. 1.28 +0.88 0.36 —1.77
53 CHqCH™ +# — CHRC™ + HF deep 1.59 +1.83 0.64 +0.39
54 CHyCH® +# — CHoCH* + HF deep 0.60 —0.63 0.13 —1.91
b5 CH2CH® 4+ # — CH2C* + H¥ deep 1.86 +1.63 1.33 +0.36
56 CHoCH*® +# — CHCH* + H# dehydr. 1.47 +0.72 0.13 —1.01
57 CH3C* +# — CHoC* + H¥ deep 0.17 —0.83 0.04 —1.94
58 CHCH* +# — CHC* + H¥ deep 0.70 +0.58 1.10 +0.51
59 CHoC* +# — CHC® + H# deep 0.55 —0.32 0.26 —0.69
60 CHC® +# — CC* + H¥ deep 1.99 +3.04 1.07 +0.92
61 CoHg™ +*—= CHy™ + CHg"™ cracking 3.13 +1.11 2.81 —2,23
62 CHqCHo "™ +*— CHy" + CHo" cracking 2.75 +1.89 2.25 —0.91
63 CHoCHo" +*— CHy" + CHo" cracking N/A N/A 1.05 —0.23
64 CH4qCH® +* - CHy" + CH" cracking 2.53 +2.27 N/A N/A
65 CH4qC" +* =+ CHy" +C" cracking 2.30 +2.03 1.59 —1.30
66 CHoC" +* - CH" 4+ C” cracking N/A N/A 0.26 —0.69
67 CHC" +* - CH" +C" cracking N/A N/A 1.12 +0.66
68 CC*4+*=sC™+C” cracking N/A N/A 0.45 —2.61
69 CHy* +# — CHy " + H¥ deep 1.42 +0.78 0.48 —2.46
70 CHa™ +# — CH2"~ +HF deep 1.98 +1.54 0.64 —1.34
1 CHs* +# — CH* + H¥ deep 2.31 +2.11 0.69 +0.458
T2 CH* +# — C* + H¥ deep 1.86 +2.01 1.09 —2.35
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Effect of oxidant

endothermic.

« Cracking not shown

(calculated).

 Included MvK interconversion

of the surfaces.

* Included burning away surface

deposits of C* (due to coking) with
excess O, and surface oxygen O*,

This project has received funding from the Eu
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Two surfaces: oxidised (red) and reduced (black)

E (eV)

Potential energy surface calculated (also AG but not shown here)

On the oxidised surface, the reaction is exothermic. On the reduced,
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Effect of surface oxidation

Methods (KMC):

« A graph-theoretical approach (ZACROYS), stiffness scaling of fast steps (adsorptions, diffusion)
* Rate expressions calculated via the TST from DFT data

* Including the ZPE and Gibbs free energy contributions (in the harmonic approximation)

* LH, ER and non-activated reaction steps, surface interconversion (oxidised, reduced)

» Effect of oxidants used (CO,, N,O, O,)

Model (KMC):

* A quasi-hexagonal lattice with four types of active sites
(Oreduced’ Crreduced’ Ooxidised,Croxidised,) -see on the I'ight

* Intotal 324 sites

* Initially clear lattice

« 10’ events

* Varying the operating conditions:

Pressure

Temperature

Influx mixture composition

Oxidant used

..

M, 3 by -
o = T s s B e
S R

P Sex

Oxidation state of the surface (ratio)

B s
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Effect of surface oxidation

Selectivity(CO,)

Selectivity(CH;CHCH,)
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00 . ry
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Figure 10: (top) Selectivity towards propene (left) and CO; (right), (bottom) Cata-
lyst activity (left) and propene yield (right). Propane dehydrogenation is performed at
DPcHsCHoCH, = 1.0 bar, paigane = 1.0 bar at T' = 900 K over surfaces with a varying fraction
of oxidation. Symbols shape denotes the oxidant used: m Oy, ® N2O, A none. Lines are the
guides for an eye.
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*
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Kinetic modelling

Methods and model (MKM):
* Solving a system of continuous differential equations

* Reaction rates are expressed as changes in surface coverage over time, computed based on
reaction rate constants, reaction orders, surface coverages

I I
":"Ix',n\ Sn
=k L0 =k 07"
i=1 i=1

* Mass balances of the surface species are sums of reaction rates times stoichiometry factors

}\r
db;
- =R, = —Sim Sin n
I (=Sins + Sinp) 7

n=1
* Mass balances for gas phase species:

dac; Ve l—¢ Ve
: :_Cz'ine c* Ri__cz'
dt 5 et + (3 Fout

* CSTRreactor (PFR is analogously solved)
* 20 wt% catalyst loading, specific surface area 200 m?/g, density 3.6 g/mL
¢ GHSV =300 ht

Simulations in progress, results to be
presented in the next GAM.
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Kinetic modelling

Butane dehydrogenation

e — 10°
c
—e— 0.1 bar —+— 5bar s
ogl 05 bar —e— 10 bar S0t
= —e— lbar  ---- Full conv. [
S —e— 2 bar - Process conv. b=
= S 10-2
5 0.6 e
: i
[¥] — 10—3
204 eSS _E C.|H;||;| .
e w H: »
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0.2 X CHzCHCHCH; »
/d ClLCCCl s »
107
0.0 o = 700 QDEI' 1000 1100 1200
‘650700 800 900 1000 1100 1200 1300 1400 1500 T[K]
Temperature [K]
Figure 7. Bulk gas concentrations in the steady-state operation of the
Figure 4. Butane conversion from MKM simulations at different modelled CSTR reactor, at different temperatures. The conditions are
operating conditions. The GHSV was fixed to 300 h™'. The red P =1 bar and GHSV = 300 h™L.

dashed line shows the minimum conversion achieved by the
CATOFIN—CATADIENE technologies.

* *

* *
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Kinetic modelling

1.0 1.0

0.8+ 0.8

2-Butene
—=»— 1-Butene
—e— Butadiene
041 —— 2-Butyne

0.6 —*— 2-Butene
—=— 1-Butene
—e— Butadiene
0.41 —— 2-Butyne

0.6

0.2

C-based selectivity [/] (0.1 bar)
C-based selectivity [/] (1 bar)

— - s——0—

0.0 -— 0.0 -
650700 800 800 1000 1100 1200 1300 1400 1500 650700 800 900 1000 1100 1200 1300 1400 1500

Temperature [K] Temperature [K]

Figure $. Selectivities to various products at different temperatures and 300 h™' GHSV, at 0.1 bar (left) and 1 bar (right) pressures. The main
product is 2-butene, but at higher temperatures and lower pressures, 2-butyne starts to dominate the selectivity.
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Figure 6. Relative fraction of free active sites for hydrocarbons (left) and hydrogen (right) adsorption. Surface coverage is low (maximum of ~6%)
throughout various operating conditions.
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Full multi-scale

Butane (T=850 K) CED
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Figure 7: Bulk gas concentrations in the steady state operation of the modelled CSRT lifference (revi=fwd) Number of reaction steps
reactor, at different temperatures, The conditions are P = 1bar and GHSV = 300h~!
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