

<u>José-Francisco Pérez-Calvo</u>, Daniel Sutter, Matteo Gazzani and Marco Mazzotti Simulation, modelling and optimization of different chilled ammonia-based process configurations for CO₂ capture applied to cement plants **ETH** zürich

The CAP

From power to cement plants

SCOPE OF THE STUDY

- To adapt the CAP to cement plants for CO₂ capture
- To prove that the higher CO₂ concentration in the flue gas improves the performance of the CAP
- To show that the CAP has better performance than MEA-based processes for CO₂ capture from cement plants

Holistic process development

Rate-based model

Aspen Plus RadFrac distillation model (RateSep)

Simplifying:

$$N_{\rm CO_2} = A_{\rm eff} K_{\rm G, CO_2} (p_{\rm CO_2, G} - p_{\rm CO_2, L}^*)$$
, with $\frac{1}{\nu}$

with
$$\frac{1}{K_{G,CO_2}} = \frac{RT}{k_{g,CO_2}} + \frac{H_{CO_2}}{Ek_{l,CO_2}^0}$$

Phase equilibria Thomsen model

Predicts SLE in addition to VLE

Holistic process development

[1] Darde et al. *Ind Eng Chem Res* 49 (2010) 12663-74
[2] Sutter et al. *Chem Eng Sci* 133 (2015) 170-180

Rate-based model

Aspen Plus RadFrac distillation model (RateSep)

Simplifying:

$$N_{\rm CO_2} = \frac{A_{\rm eff}}{K_{\rm G,CO_2}} \left(p_{\rm CO_2,G} - p_{\rm CO_2,L}^* \right), \quad \text{with } \frac{1}{K_{\rm CO_2}} \left(p_{\rm CO_2,G} - p_{\rm CO_2,L}^* \right)$$

with
$$\frac{1}{K_{G,CO_2}} = \frac{RT}{k_{g,CO_2}} + \frac{H_{CO_2}}{Ek_{l,CO_2}^0}$$

Phase equilibria	Thomsen model	 ✓ Predicts SLE in addition to VLE 	
Transport phenomena	Rochelle model [1] Wang et al. <i>Ind Eng Chem Res</i> 55 (2016) 5357-84	 ✓ Range of structured packings: X, Y, Z, 150-350 ✓ Aqueous solutions for CO₂ capture 	
Reaction kinetics	This work [2] Pérez-Calvo et al. <i>Chem Eng Trans</i> 69 (in press)	 ✓ CO₂ absorption pilot plant tests ✓ Commercial structured packing ✓ Synthetic flue gases containing up to 35%vol CO₂ ✓ Aqueous ammonia solutions containing up to 17%was 	t NH ₃

Reaction kinetics – Model fitting

82 experimental points

Pérez-Calvo et al. Chem Eng Trans 69 (in press)

 $CO_2 + 2NH_3 \xrightarrow{k_{cm}} NH_2COO^- + NH_4^+$

Holistic process development

Process synthesis – Towards the CAP for cement application

General modifications/improvements

- 1. Decreasing energy consumption
- 2. Minimizing solvent make-up
- 3. Decreasing CAPEX
- 4. Meeting specifications and constraints
- 5. Avoiding solid formation

Sutter et al. Faraday Discuss 192 (2016) 59-83

Process synthesis – Towards the CAP for cement application

General modifications/improvements

Solvent recovery section

Process synthesis – Towards the CAP for cement application

General modifications/improvements

Solvent recovery section

Recycle of the NH₃ and CO₂ rich streams

Process synthesis – Towards the CAP for cement application

General modifications/improvements Solvent recovery section Recycle of the NH₃ and CO₂ rich streams Condenser removal in CO₂ desorber

Institute of Process Engineering

Process synthesis – Towards the CAP for cement application

Process synthesis – Towards the CAP for cement application

(General modifications/improvements		
Solvent recovery section			
	Recycle of the NH_3 and CO_2 rich streams		
	Condenser removal in CO ₂ desorber		
	Intercooling of CO ₂ absorber		
	Acid wash and DCC-DCH heat integration		

Improvements specific to cement

Process synthesis – Towards the CAP for cement application

General modifications/improvements Solvent recovery section Recycle of the NH₃ and CO₂ rich streams Condenser removal in CO₂ desorber Intercooling of CO₂ absorber Acid wash and DCC-DCH heat integration Improvements specific to cement deSO_x by aqueous NH₃ solution

Process synthesis – Towards the CAP for cement application

General modifications/improvements Solvent recovery section Recycle of the NH₃ and CO₂ rich streams Condenser removal in CO₂ desorber Intercooling of CO₂ absorber Acid wash and DCC-DCH heat integration Improvements specific to cement deSO_x by aqueous NH₃ solution

Simplification of the NH₃ absorber

Heuristic process optimization

[3] Voldsund et al. (2018) CEMCAP framework for comparative techno-economic analysis of CO_2 capture from cement plants (D3.2)

Process optimization – Results

Overall energy performance

 $C_{\rm NH_3}^{\rm FG-WW} = 0.05 \text{ mol}_{\rm NH_3}/\text{kg}_{\rm H_2O}$

Institute of Process Engineering

The CAP vs Amine-based capture processes for cement

Institute of Process Engineering

cement plant with MEA post combustion capture (D4.2 CEMCAP)

Conclusions

- 1) The CAP shows a very promising performance with respect to amine-based capture processes for cement application
 - Approx. 50% energy savings vs. MEA capture process
 - Similar height of the CO₂ absorber and number of unit operations
 - Vast experience, ready for large-scale demonstration for the cement plant application
- 2) The performance of the CAP applied to cement plants improves with respect to the power plant application
 - The high CO₂ concentrations can be exploited to minimize the energy consumption of the process with minor adaptations
 - The removal of residual NH₃ from the treated flue gas is favored by the high CO₂ concentration
 - The SO₂ removal can be integrated with the CAP by applying a diluted aqueous NH₃ solution
- 3) Improvements have been quantified and new process operating conditions have been obtained using a model-based optimization
 - Model developed on the grounds of 150 successful pilot plant tests performed at typical cement plant conditions: CO₂ absorber, de-SO_x unit and NH₃ absorber
- 4) New and advanced CAP configurations have been implemented

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 641185

This work was supported by the Swiss State Secretariat for Education, Research and Innovation (SERI) under contract number 15.0160

The authors would like to thank Kaj Thomsen (Department of Chemical and Biochemical Engineering, Technical University of Denmark) for making the thermodynamic model available and for providing the relevant software

<u>José-Francisco Pérez-Calvo</u>, Daniel Sutter, Matteo Gazzani and Marco Mazzotti Simulation, modelling and optimization of different chilled ammonia-based process configurations for CO₂ capture applied to cement plants