University of Stuttgart Institute of Combustion and Power Plant Technology Prof. Dr. techn. G. Scheffknecht

Oxyfuel burner technology for cement plants

REFEREN

Francisco Carrasco

14.02.2018 Oxyflame Workshop. Bochum, DE

ıfk

Outline

Motivation

Objective

Test facility and burner geometry

Results

Conclusions

Motivation

Motivation

50% of $CO_2 =>$ 2010 2020 2030 2040 2050 decomposition of limestone Baseline 2.5 emissions: 2.33 2.34 Gt Flue gas 2.22 Energy efficiency: 10% (Gt Co₂) 2.20 Clinker substitution: 10% Direct emissions () 1.5 2.0 Raw meal CO₂ emissions reductions 1.88 Gt 1.86 BLUE emissions: 1.55 Gt Cyclone Source: Cement Roadmap, IEA preheater Precalciner Cooler exhaust air Fuel 1 ton of cement \rightarrow 0,6 - 0,7 tons of CO₂ Tertiary air duct Fuel/ air -----Rotary kiln Cooling air Clinker Cooler Source: International Energy Agency

Motivation

Technologies investigated:

- Postcombustion
 - Chilled ammonia
 - Membrane-assisted CO2 liquefaccion
 - Calcium looping
- Oxyfuel

CO₂ Capture from Cement Industry

Objective

Evaluate suitability of using modern burner design (multi-nozzle) for oxyfuel operation.

Downscaling of rotary kiln burner Assessment of Combustion behavior

Burner and test facility

Burner

	Industry	IFK-Pilot facility
Burner Diameter [m]	1.1	0.075
Ratio of Diameters [-]	5	11
Thermal Load [MW]	47	0.5
Burner momentum [N/MW]	6-14	10

Downscaled burner for IFK-KSVA

Downscaling criteria:

- Burner momentum (outlet velocities)
- Swirling (0-40°)

Burner assembly

0° to 40° nominal swirl

Test setup

Test cases

		Air	OF29	OF32
Fuel thermal input	kW	400	400	400
Primary gas composition	Vol%, wet	Air	60% O ₂ + 40% CO ₂	60% O ₂ + 40% CO ₂
Secondary gas composition	Vol%, wet	Air	20% O ₂ + 80% CO ₂	24% O ₂ + 76% CO ₂
Fuel carrier gas composition	Vol%, wet	Air	100% CO ₂	100% CO ₂
λ (air to fuel ratio)	-	1,10	1,10	1,10

Test set-up

Fuel characterisation

• German pre-dried lignite

	an	wf
NCV [MJ/kg]	22,200	24,860
Water [%]	10,7	-
Ash [%]	3,02	3,38
Volatiles [%]	46,6	52,1
Cfix [%]	39,7	44,5
C [%]	58,4	65,4
H [%]	4,25	4,76
N [%]	0,702	0,786
S [%]	0,317	0,355

	PSD
D10	6 µm
D50	30 µm
D90	150 µm

Results

Species concentration (centerline)

Oxygen

Carbon Monoxide

Gas temperature (centerline)

17

Incident heat flux (measured at the wall)

Oxygen enrichment in PG during OF29 (centerline)

Swirl angle variation in PG for OF27 (centerline)

Nitrogen oxides (centerline)

Flue gas reduction considered:

Conclusions

Conclusions

- Tested jet burner design could be used for oxyfuel operation without modifications necessary.
- Total oxygen content, gas distribution in burner outlets and swirl angle are useful adjustable parameters in order to obtain similar temperature, flame formation and heat transfer behavior as in air combustion.
- Lower total oxygen enrichment (OF25-27) should be used to obtain similar incident heat flux to the walls as in air operation.
- Oxygen enrichment in primary gas (60 vol.%) favors fuel oxidation to CO_2 (dominance of heterogeneous gasification reaction $C_{(s)} + CO_2 \rightarrow 2CO$ is mitigated).
- For tested OF conditions NO_x emissions are reduced in ~50% when considering flue gas reduction due to recirculation conditions.

Thank you!

FRANCISCO CARRASCO

e-mail francisco.carrasco@ifk.uni-stuttgart.de

Universität Stuttgart Institut für Feuerungs- und Kraftwerkstechnik Pfaffenwaldring 23 • 70569 Stuttgart • Germany

ıfk

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 641185

www.sintef.no/cemcap

Twitter: @CEMCAP_CO2

University of Stuttgart - Institute of Combustion and Power Plant Technology - Prof. Dr. techn. G. Scheffknecht