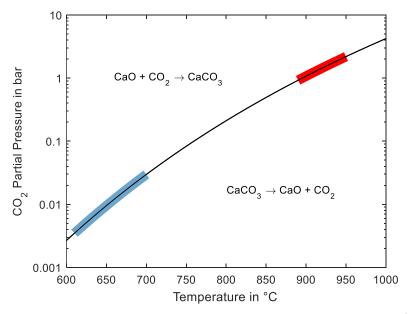


University of Stuttgart

Institute of Combustion and Power Plant Technology Prof. Dr. techn. G. Scheffknecht

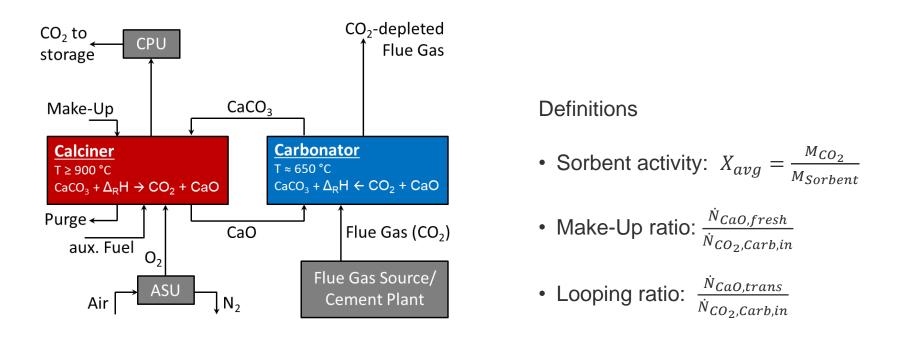

Demonstration of Calcium Looping CO₂ capture for cement plants at semi industrial scale

Matthias Hornberger, Reinhold Spörl, Günter Scheffknecht

14th GHGT, 22nd October, Melbourne, Australia Fundamentals of Calcium Looping CO₂ capture from cement plants

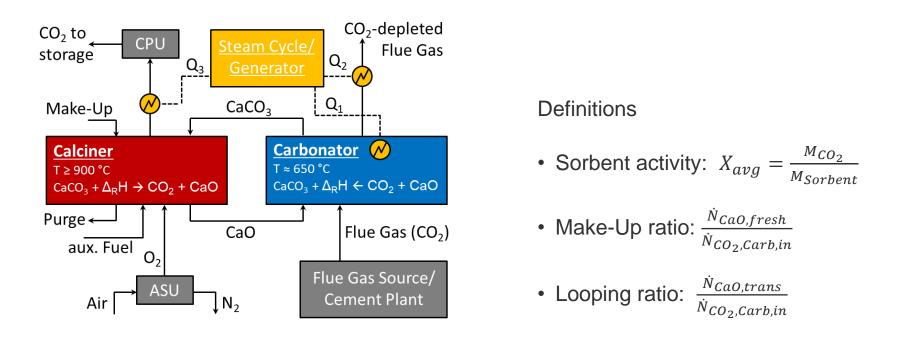
Calcium Looping CO₂ capture

$$CaCO_3 \rightleftharpoons CaO + CO_2 \quad \Delta_R H = +178.2 \frac{kJ}{mol}$$

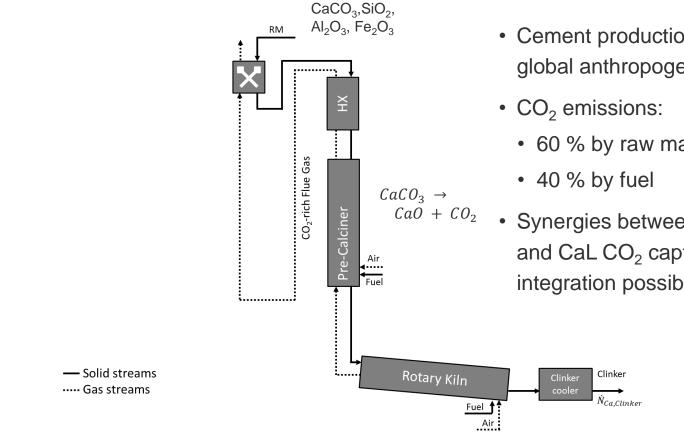

Calcination-carbonation equilibrium calculated by

- Solid sorbent cycle process
- CO₂ capture by cyclic calcination and carbonation of CaCO₃/CaO
- Efficient energy recuperation because of high temperature level

University of Stuttgart - Institute of Combustion and Power Plant Technology - M. Sc. Matthias Hornberger


Calcium Looping CO₂ capture process

$$CaCO_3 \rightleftharpoons CaO + CO_2 \quad \Delta_R H = +178.2 \frac{kJ}{mol}$$



Calcium Looping CO₂ capture process

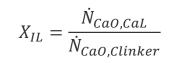
$$CaCO_3 \rightleftharpoons CaO + CO_2 \quad \Delta_R H = +178.2 \frac{kJ}{mol}$$

Clinker manufacturing process

- Cement production constitute ~5-8 % of global anthropogenic CO₂ emissions
 - 60 % by raw materials
- Synergies between clinker manufacturing and CaL CO₂ capture by solid and energy integration possible

Tail-end Calcium Looping CO₂ capture from cement plants

- Easy retrofitability
- CO₂ capture by carbonation and oxy-fuel calcination
- Increasing integration level (X_{IL}) leads to:
 - Increase make-up to CaL system
 - Increase sorbent activity
 - Reduced CO₂ load (Cal oxy-fuel calcination)
 - Overall fuel consummation increases
 - Electricity production (CO₂ neutral)


Clinker

N_{Ca,Clinker}

Clinker

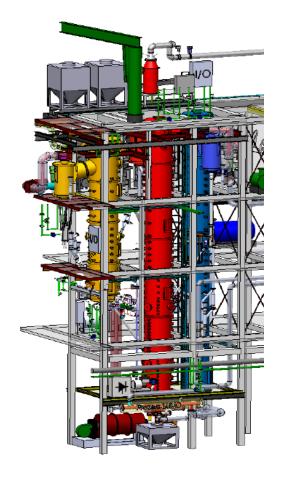
cooler

Air

Methodology / experimental set-up

Fluidized Bed Research Facilities – MAGNUS

200 – 230 kW_{th} pilot scale facility (3 reactors)


Bubbling bed reactor (1x)

- diameter: 330 mm
- height: 6 m

Circulating fluidized bed reactor (2x)

- diameter: 200 mm
- height: 10 m

Possible reactor configuration: CFB-CFB, BFB-CFB Hot flue gas recirculation for oxy-fuel combustion Gas analysis (CO₂, O₂, CO, SO₂, NO_X, CH₄, H₂, C_xH_y) No electrical heating (heated by combustion)

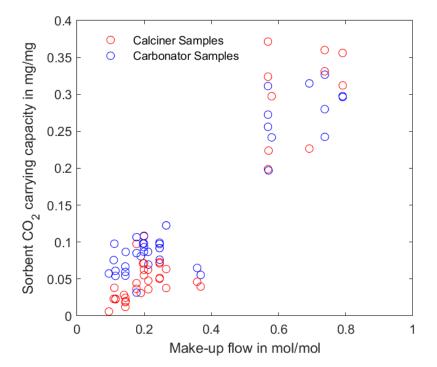
Experimental conditions

- CO₂ flue gas concentration: 15 33 vol%
- Volume Flow: up to 180 Nm₃/h (~ 0.1 % of cement plant flue gas)
- Make-up flow/ratio: up to 50 kg/h / 1 mol_{CaO}/mol_{CO2};

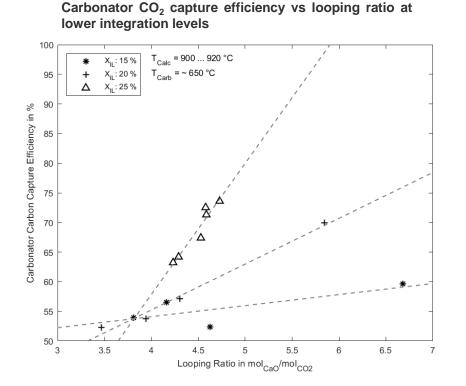
Limestone	CaO	MgO	SiO ₂	Al_2O_3	Others	CO ₂		
	wt%, wf	wt%, wf	wt%, wf	wt%, wf	wt%, wf	wt%, wf		
Western Germany	54.5	0.7	0.4	1.2	0.2	43.0		
*determined b								

Coal	С	Н	O *	Ν	S	Ash	H ₂ O	H
	wt%,	wt%,	wt%,	wt%,	wt%,	wt%,	wt%,	MJ/kg,
	waf	waf	waf	waf	waf	wf	ad	wf
Columbian I	80.3	4.9	12.3	1.9	0.6	9.6	7.4	28.98
Columbian II	77.6	5.3	14.4	1.6	1.1	9.13	7.4	28.09

*calculated by difference


wf: water free; waf: water and ash free; ad: air dried

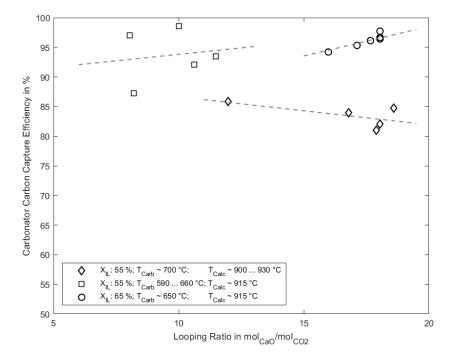
Results and discussion

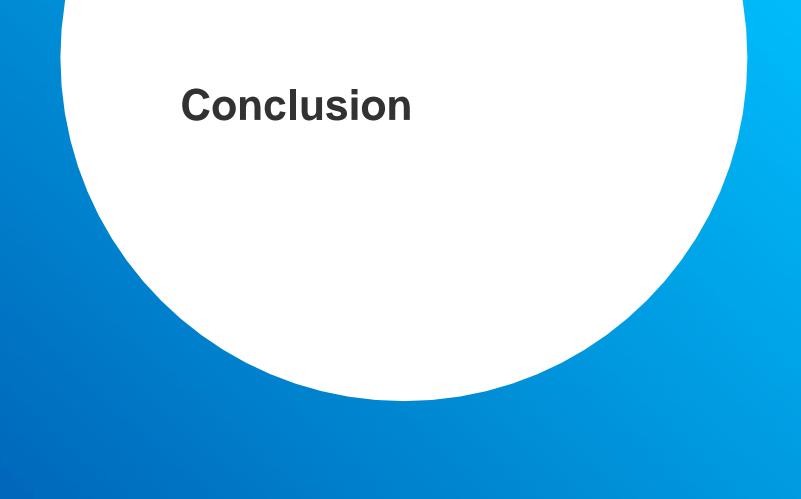

Results and discussion – Sorbent CO₂ carrying

- Sorbent capacity depends strongly on make-up ratio ("sorbent age")
- At lower make-up ratios sorbent activity of carbonator samples significantly higher than calciner samples
- Hydration during cooling of samples higher for carbonator samples indicates structural during carbonation

Average sorbent capacity of carbonator and calciner samples taken during the experimental campaigns

Results and discussion – CO₂ capture performance




- Higher CO₂ concentration at lower integration levels leads to reduced looping ratios
- Limitation of CO₂ capture by incoming amount of (active) CaO
 - CO₂ capture increases with looping ratio
 - Stronger improvement of CO₂ capture with looping ratio at higher integration level

Results and discussion – CO₂ capture performance

- CO₂ capture up to 98 % achieved due to high sorbent activity
- Limitation of CO₂ capture by calcination-carbonation equilibrium at higher integration levels
- No influence on CO₂ capture efficiency at higher integration levels (i.e. makeup ratios)

Conclusion

- Synergies between clinker manufacturing and Calcium Looping CO₂ capture due to use of common feedstock (CaCO₃)
- Different integration levels (15 % to 65 %) for a tail-end Calcium Looping cement plant system has been assessed
- Calcium Looping CO₂ capture for cement application has been investigated at IKF's 200 kW_{th} Calcium Lopping pilot plant achieving CO₂ capture efficiencies up to 98 %
- Sorbent's CO₂ carrying capacity improves with increasing integration level (i.e. make-up)
- For lower integration levels a significant improvement of CO₂ capture with increasing looping ratio was found, while for higher integration levels the CO₂ capture was limited by the carbonation equilibrium

Thank you for your attention!

Acknowledgement

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement no 641185

www.sintef.no/cemcap

Twitter: @CEMCAP_CO2

Disclaimer: The European Commission support for the production of this publication does not constitute endorsement of the contents which reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein

Thank you!

Matthias Hornberger

e-mail <u>Matthias.hornberger@ifk.uni-stuttgart.de</u> phone +49 711 685-67801 fax +49 711 685-63781

University of Stuttgart Institute of Combustion and Power Plant Technology Pfaffenwaldring 23 • 70569 Stuttgart • Germany

ıfk