() SINTEF

MEMBRANE AND MEMBRANE ASSISTED LIQUEFACTION PROCESSES FOR CO₂ CAPTURE FROM CEMENT PLANTS

Melbourne, Australia 22nd October 2018 Rahul Anantharaman and David Berstad SINTEF Energy Research

Background

 6-7% of global anthropogenic
CO₂ emissions from the cement industry

 CO₂ emissions an inherent part of the cement production process

CO₂ composition: 22% (low air leak)

SINTEF

Membranes processes and their applicability in cement plants

- Low enviromental impact
- Ease of integration (no steam required in the process)
- Compact process
- Membrane separation processes favour high
- ³ CO₂ partial pressure

Cost of membrane-based CO_2 capture compared to post-combustion MEA-based capture at a 90% CCR depending on the membrane properties for cement plant

Roussanaly, S. *et al.* (2018) 'A new approach to the identification of high-potential materials for cost-efficient membrane-based post-combustion CO2 capture', *Sustainable Energy & Fuels*.

CO₂ liquefaction process

- No chemicals
 - Separation by phase change
- Flexible process
 - CO₂ product at conditions suitable for ship or pipeline transport
- Compact

4

- CO₂ capture at high pressure
- Used as standard for oxy-combustion processes

SINTEF

Is there a role for CO₂ liquefaction in postcombustion capture from cement?

Membrane assisted liquefaction

 CO_{2} concentration at the interface is important

- Affects CO2 capture ratio
- Affects amount of recycle to membrane
- Membrane area
- Vaccum pump size and work

CO₂ concentration at interface depends on

- Membrane type
- Pressure differential across membrane
- Membrane area

Membrane assisted liquefaction

From CEMCAP cost estimation

- Around 60% of total direct cost of the MAL process is due to the membrane process
- Membrane itself, the vacuum pump and the flue gas compressor stand out as the most expensive pieces of equipment
- These three together account for around 80% of the membrane part costs, or 46% of the total direct costs
- Membrane accounts for 9% of the total direct cost

Membranes considered

	Membrane in CEMCAP work
CO ₂ permeance	
(Sm ⁻³ /m ² .bar.h)	2.7
N ₂ selectivity	20
O ₂ selectivity	26
H ₂ O selectivity	20

Membrane assisted liquefaction process performance

VS

MAL process 2 stage membrane process

Summary

- Membrane assisted liquefaction process performance and cost is will vary significanctly with membrane performance
- Critical to identify suitable membrane properties for the process for a given flue gas composition
- Membrane assisted liquefaction outperforms the 2 stage membrane process for post-combustion CO₂ capture
 - Thermodynamic proof irrespective of membrane type or performance (not included in this presentation)
- Techno-economic analysis of membrane processes presented in this work will be performed and compared

Acknowledgements

This work was done as part of the

CEMCAP project that has received funding from the European Union's Horizon 2020 *research and innovation* programme under grant agreement No 641185

and

the NCCS Centre, performed under the Norwegian research program Centres for Environment-friendly Energy Research (FME). The authors acknowledge the following partners for their contributions: Aker Solutions, ANSALDO Energia, CoorsTek Membrane Sciences, Gassco, KROHNE, Larvik Shipping, Norcem, Norwegian Oil and Gas, Quad Geometrics, Shell, Statoil, TOTAL, and the Research Council of Norway (257579/E20).

SINTEF

Technology for a better society