

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement n° 641185 (CEMCAP)

Screening CO₂ capture test for cement plants using a lab scale Calcium Looping pilot facility.

M. Alonso, B. Arias, A. Méndez, F. Fuentes, J.C. Abanades CSIC-INCAR, Francisco Pintado Fe, 26, 33011 Oviedo (Spain)

Objective

Calcium Looping (CaL) is based on the use of CaO as a regenerable sorbent of CO_2 . The technology has been demonstrated for post-combustion CO_2 capture in power generation at TRL 6-7, but requires detailed testing at closer conditions to those expected in cement applications: higher CO_2 concentrations, higher sorbent activity and lower average particle sizes. We investigate these new operating conditions in a 30 kW_{th} CaL pilot in CEMCAP.

THE 30 kW TEST FACILITY

MAIN FEATURES

 \circ Two CFB reactors (h = 6 m, d_i = 0.1 m)

• Double recycle loop

 \circ Gas mixtures of CO₂, air, SO₂, H₂O feeds

 \circ 40 Thermocouples, 20 Δ P measurements

 \circ 4 O₂ zirconia probes,

 \circ 2 on-line gas analysers (CO₂, O₂, SO₂, NO_x)

EXAMPLES OF EXPERIMENTAL RESULTS OF CO₂ CAPTURE

•••••• Gs

REACTION MASS BALANCE

RANGE OF OPERATING CONDITIONS

-Wcarb -----Wcalc

CONCLUSIONS

- High activity material resulting from large make up flows of limestone allow for high CO₂ capture efficiencies despite very low solids inventory in the reactor (100 kg/m²).
- Pilot plant and its reactor model behaves with similarly with flue gases from cement than with flue gases from power when using limestone as make up.
 References
- Hornberger M., Spörl R., Scheffknecht G., "Calcium Looping for CO₂ capture in cement plants Pilot scale test". 13th Conference on Greenhouse Gas Control Technologies (GHGT-13), Lausanne, Switzerland.
- Spinelli M., Martínez I., De Lena E., Cinti G., Hornberger M., Spörl R., Abanades J.C., Mathai R., Fleiger K., Hoenig V., Gatti M., Campanari, S., Consonni S., Romano M.C. "Integration of Ca-Looping systems for CO₂ capture in cement plants ". 13th Conference on Greenhouse Gas Control Technologies (GHGT-13), Lausanne, Switzerland.
- Charitos, A.; Rodriguez, N.; Hawthorne, C.; Alonso, M.; Zieba, M.; Arias, B.; Kopanakis, G.; Scheffknecht, G.; Abanades, J. C., "Experimental Validation of the Calcium Looping CO₂ Capture Process with Two Circulating Fluidized Bed Carbonator Reactors". Ind. Eng. Chem. Res. 2011, 50, 9685-95.
- Rodriguez, N.; Alonso, M.; Abanades, J. C., "Experimental Investigation of a Circulating Fluidized-Bed Reactor to Capture CO₂ with CaO". AIChE J., 2011, 57, 1356-66.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement nº 641185 (CEMCAP)