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The outage started 20:10

I plugged in my Model 3 
for the first time at 18:19…



Overview of presentation

• Categorisation of mobile and stationary battery types 

• Batteries for what?

• Cost-benefit analyses from CINELDI and CINELDI-related research

• Lessons learned so far
− Value of batteries and flexible EV charging in the grid

− Value of accurate problem formulation and modelling

− Value of fast-computing algorithms



Stationary battery types

• Off-grid systems

• Behind-the-meter batteries
− PV-battery systems for households, larger buildings, (neighbourhoods?)

• Grid-scale batteries
− Battery systems for small and large wind farms
− Battery systems for grids at distribution/regional/transmission level 



Mobile and vehicle battery types

• Electric passenger cars

• Larger vehicles and ferries

• Mobile batteries (Batteries “on wheels”)

https://www.greentechmedia.com/articles/read/the-business-case-for-mobile-batteries-in-new-york#gs.44l5wc

https://www.greentechmedia.com/articles/read/the-business-case-for-mobile-batteries-in-new-york#gs.44l5wc


Multiple uses of stationary batteries

• Behind-the-meter batteries
− Self-consumption of PV
− Price arbitrage
− Grid services by aggregation

• Grid-scale batteries
− Grid investment deferral or postponement
− Smoothing of wind power fluctuations (same owner)
− Grid services
− Short-term balancing
− Price arbitrage
− Capacity adequacy



Multiple uses of vehicle batteries for flexibility

• Electric vehicles
− Self-consumption of PV
− Price arbitrage
− Grid services by aggregation

• Larger vehicles and ferries
− An interesting duality:

• Electric ferries and heavy duty vehicles needs A LOT of electric power

• This yields more grids or local batteries to support the instant power needs

• At the same time: When stand-by, these vehicles could also support the grid

• Here, industry, policy makers and research must join forces to find least-cost solutions!



Cost-benefit analyses of mobile and stationary
batteries in the grid

• Practical problem 1: The utilization of battery storage is very case-
specific, so it is tempting to do tailor-made («ad hoc») calculations
of the costs and benefits.
− Can you trust the results?

• Practical problem 2: There is no standard, or recommended, 
approach
− Battery assessments are not straightforward, because of the inter-temporal links, 

mulitple possible usages, battery degredation effects, large degrees of freedom related
to sizing, etc

− A LOT of research activities going on, but methods and models differ quite much



EV batteries vs stationary batteries for prosumers. 
What is the best choice?

Problem formulation
Minimize the annual energy costs for a prosumer with PV and a) Powerwall
b) Tesla Model S under different grid tariff structures

Approach
• Use formal optimization (dynamic programming) for each hour of the year

• Not considered: Uncertanties, degradation and investments

Bjarghov, S; Korpås, M; Zaferanlouei, S (NTNU) Value Comparison of EV and House 
Batteries at End-user Level under Different Grid Tariffs. IEEE ENERGYCON 2018



EV batteries vs stationary batteries for prosumers. 
What is the best choice?

Bjarghov, S; Korpås, M; Zaferanlouei, S (NTNU) Value Comparison of EV and House 
Batteries at End-user Level under Different Grid Tariffs. IEEE ENERGYCON 2018



EV batteries vs stationary batteries for prosumers. 
What is the best choice?

 Value of house batteries are 1 – 3 %
 Value of EV batteries are 5 – 8 %

Bjarghov, S; Korpås, M; Zaferanlouei, S (NTNU) Value Comparison of EV and House 
Batteries at End-user Level under Different Grid Tariffs. IEEE ENERGYCON 2018



Battery storage for medium-sized swimming facility. 
Is it profitable?

Problem formulation
Minimize the total cost of electricity for the facility, including the cost of 
energy and peak power demand, while ensuring the longevity of the battery

Approach
• Use formal optimization (mixed-integer programming) for each hour of 

the year, including investments and battery degradation.

• Extensive sensitivity analysis for uncertanties in parameters

• Not considered: Short-term uncertanties

Berglund, F; Zaferanlouei, S; Korpås, M; Uhlen K; (NTNU) Optimal Operation of Battery Storage for a 
Subscribed Capacity-Based Power Tariff Prosumer : A Norwegian Case Study. Submitted to Applied Energy, 2019 



Battery storage for medium-sized swimming facility. 
Is it profitable?

Degradation model

Berglund, F; Zaferanlouei, S; Korpås, M; Uhlen K; (NTNU) Optimal Operation of Battery Storage for a 
Subscribed Capacity-Based Power Tariff Prosumer : A Norwegian Case Study. Submitted to Applied Energy, 2019 



Battery storage for medium-sized swimming facility. 
Is it profitable?

 Total costs are reduced by 0.5-1.0 %
 For a 2030 scenario: 4-5 %

Berglund, F; Zaferanlouei, S; Korpås, M; Uhlen K; (NTNU) Optimal Operation of Battery Storage for a 
Subscribed Capacity-Based Power Tariff Prosumer : A Norwegian Case Study. Submitted to Applied Energy, 2019 



Predictive control of energy storage: Can we
improve the computational speed? 

Problem formulation
• Storage operation strategies are today a compromise between optimality 

and computational speed 

Approach
• Re-formulate the optimziation problem to a search algorithm using

methematical theory
− Proven theoretically to give exact the same result as the original piece-wise Linear 

Programming formulation

− The new algorithm runs up to 100 000 (!) times faster than state-of-the-art solvers

Xu, B (MIT); Korpås, M (NTNU); Botterud, A (MIT); O’Sullivan F (MIT); A Lagrangian Policy for 
Optimal Energy Storage Control. Submitted IEEE Conference on Decision and Control, 2019 



Predictive control of energy storage: Can we
improve the computational speed? 

State-of-the-art solver

Proposed algorithm

Xu, B (MIT); Korpås, M (NTNU); Botterud, A (MIT); O’Sullivan F (MIT); A Lagrangian Policy for 
Optimal Energy Storage Control. Submitted IEEE Conference on Decision and Control, 2019 



Incorporating energy storage in optimal power flow. 
How to value energy stored for later use?

Problem formulation
• Maximize the value of energy storage in grids with high amounts of 

uncertain wind and solar power

Approach
• Explicity take into account uncertain wind and solar forecasts

• Use a «water value» approach for setting the end-value of storage

• Realistic grid representation by AC Optimal Power Flow

• Not considered: Degradation, investments, computational speed
Sperstad, IB (SINTEF); Korpås, M (NTNU); Energy Storage Scheduling in Distribution Systems 
Considering Wind and Photovoltaic Generation Uncertainties. Energies, Vol. 12(7), 2019 



Incorporating energy storage in optimal power flow. 
How to value energy stored for later?
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Sperstad, IB (SINTEF); Korpås, M (NTNU); Energy Storage Scheduling in Distribution Systems 
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Incorporating energy storage in optimal power flow. 
How to value energy stored for later?

WIND PV

Sperstad, IB (SINTEF); Korpås, M (NTNU); Energy Storage Scheduling in Distribution Systems 
Considering Wind and Photovoltaic Generation Uncertainties. Energies, Vol. 12(7), 2019 
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Sperstad, IB (SINTEF); Korpås, M (NTNU); Energies, Vol. 12(7), 2019 
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Sperstad, IB (SINTEF); Korpås, M (NTNU); Energies, Vol. 12(7), 2019 
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Sperstad, IB (SINTEF); Korpås, M (NTNU); Energies, Vol. 12(7), 2019 
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Sperstad, IB (SINTEF); Korpås, M (NTNU); Energies, Vol. 12(7), 2019 
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Sperstad, IB (SINTEF); Korpås, M (NTNU); Energies, Vol. 12(7), 2019 
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Sperstad, IB (SINTEF); Korpås, M (NTNU); Energies, Vol. 12(7), 2019 
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Incorporating energy storage in optimal power flow. 
Can we improve the computational speed?

Problem formulation
• Maximize the value of batteries, EV flex and V2G in grids with high 

amounts of wind and solar power

Approach
• Realistic grid representation by AC Optimal Power Flow

• Novel fast solution method tailor-made for non-linear ACOPF

• Not considered: Degradation, investments, uncertanty

Zaferanlouei, S; Farahmand, H; Korpås, M (NTNU); Ongoing work, 2019 



Incorporating energy storage in optimal power flow. 
Can we improve the computational speed?

Zaferanlouei, S; Farahmand, H; Korpås, M (NTNU); Ongoing work, 2019 



Lessons learned: Where are the benefits of storage?

• For prosumers, V2G seems more attractive than stationary storage
− Grid tariffs must reflect the value/cost for grid owner. Not straightforward

• Cycling degradation limits the attractiveness of price arbitrage

• Better to exploit other opportunities such as
1) TSO Frequency control: Causes only small variations in storage levels)

2) DSO Grid deferral: Only needed in peak hours. Can therefore be combined with 1) 

• Supercharging stations, heavy-duty vehicles and E-ferries are
challenging for the grid operator
− The economic (and environmental) consequences of using stationary batteries to 

compensate vehicle charing must be better understood

− What flexibility can large vehicles and ferries offers when they are not in use?



Lessons learned: Where are the benefits of storage?

• For prosumers, V2G seems more attractive than stationary storage
− Grid tariffs must reflect the value/cost for grid owner. Not straightforward

• Cycling degradation limits the attractiveness of price arbitrage

• Better to exploit other opportunities such as
1) TSO Frequency control: Causes only small variations in storage levels

2) DSO Grid deferral: Only needed in peak hours. Can therefore be combined with 1) 

• Supercharging stations, heavy-duty vehicles and E-ferries are
challenging for grid operation and planning
− The economic (and environmental) consequences of using stationary batteries to 

compensate vehicle charing must be better understood

− What flexibility can large vehicles and ferries offers when they are not in use? 



Lessons learned: How do we analyse the benefits of 
mobile and stationary storage in the grid?

• Storage and EV flexibility is not straightforward to analyse

• Tempting to use ad-hoc methods and assumptions

• Simulations show that such simplicifations can give misleading
results, e.g. lack of degradation modelling, lack of grid details
− Further modelling improvement is acheived by proof-of –concepts in Lab and Demos

• Theoretical «correct» methods for grid analysis with storage can
become untractable for computers for on-line operation
− Reformulation of the mathemathical problem can improve speed A LOT!

− Potentially very attractive for software used by storage operators, aggregators and grid 
operators 



This work is funded by CINELDI - Centre for intelligent electricity distribution, an 8 year Research Centre under the FME-scheme (Centre for Environment-friendly 
Energy Research, 257626/E20). The authors gratefully acknowledge the financial support from the Research Council of Norway and the CINELDI partners.
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