

ENCAP Integrated Project

Large CCS Projects meeting, Brussels 5 September 2006

Leif Brandels Vattenfall AB, Coordinator

Enhanced CO₂ Capture - ENCAP

A Research Project for the development of <u>Pre-combustion technologies</u> for <u>ENhanced CAPture of CO₂</u> in Large Power Plants

A five year Integrated Project within the EC FP6
Total budget 22.2 MEuro
EC support 10.7 MEuro

Project period 2004 March - 2009 February

ENCAP – a powerful consortium

The ENCAP Consortium gathers:

5 large European energy companies

11 leading European technology providers

12 high ranked research providers

Energi E2

PPC

RWE Power

Statoil

Vattenfall

+Total

Air Liquide

ALSTOM Power Boiler (Fr)(GE)

ALSTOM Power Centrales

ALSTOM Power Ltd (UK)

ALSTOM Ltd (CH)

BOC

Linde

Lurgi

Mitsui Babcock

Siemens

DLR SINTEF

IFP TNO

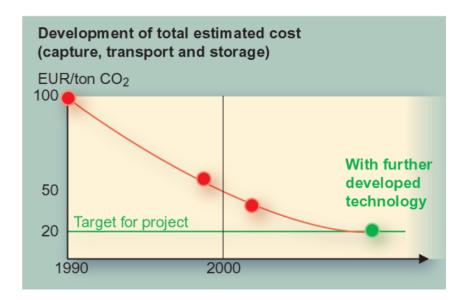
ISFTA

Chalmers

NTNU
University of Paderborn

University of Twente

University of Stuttgart


University of Ulster

ENCAP Target

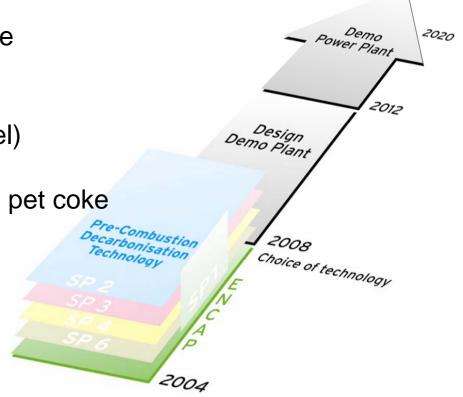
Develop pre-combustion technologies that in large Power Plants meets the target:

- 90% CO2 capture rate and
- a cost of 20 €/ton stored CO₂

ENCAP Concept development

Development and verification of technologies to reach a capture rate higher than 90% at a cost lower than 20 €ton CO₂

- Pre-combustion decarbonisation
 - IGCC for hard coal and lignite
 - IRCC for natural gas
- CO₂/O₂ combustion technologies (oxyfuel)
 - PFC for hard coal and lignite
 - CFB for hard coal, lignite and pet coke
- Chemical Looping Combustion

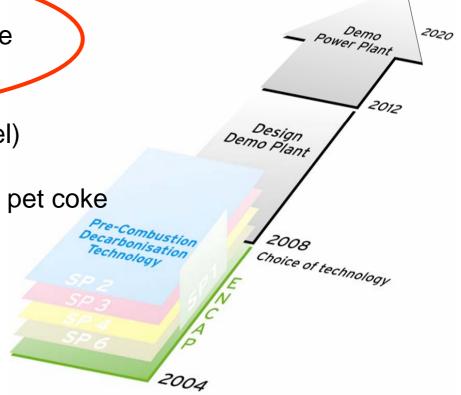


ENCAP Concept development

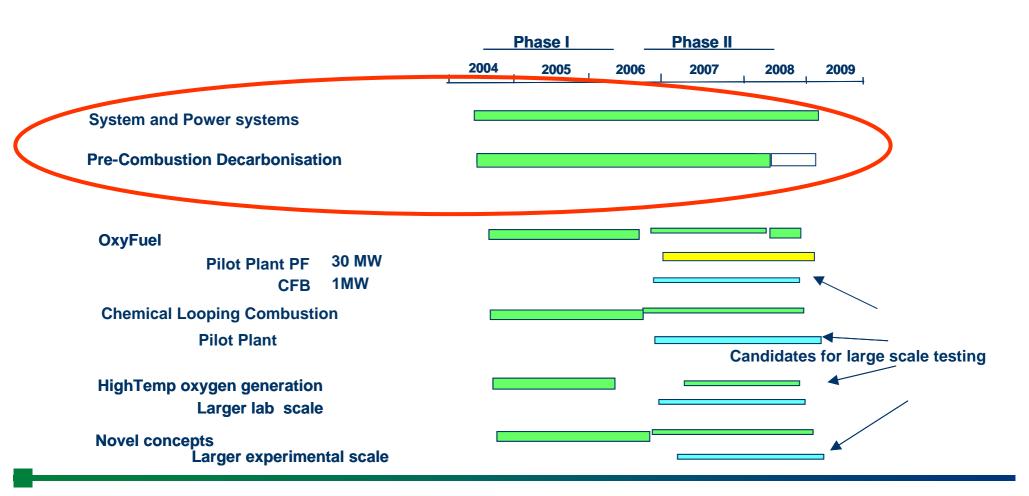
Development and verification of technologies to reach a capture rate higher than 90% at a cost lower than 20 €ton CO₂

- Pre-combustion decarbonisation
 - IGCC for hard coal and lignite
 - IRCC for natural gas
- CO₂/O₂ combustion technologies (oxyfuel)
 - PFC for hard coal and lignite
 - CFB for hard coal, lignite and pet coke
- Chemical Looping Combustion

In early 2009 - Recommend technology for a Demo Plant

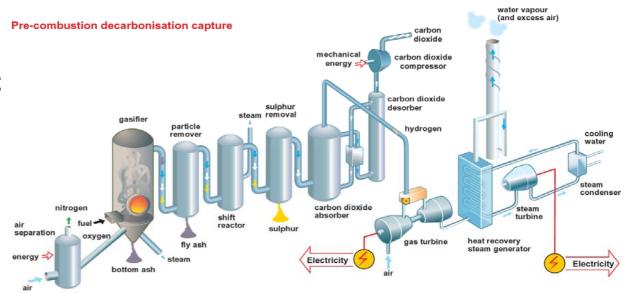


Development and verification of technologies to reach a capture rate higher than 90% at a cost lower than 20 €ton CO₂


- Pre-combustion decarbonisation
 - IGCC for hard coal and lignite
 - IRCC for natural gas
- CO₂/O₂ combustion technologies (oxyfuel)
 - PFC for hard coal and lignite
 - CFB for hard coal, lignite and pet coke
- Chemical Looping Combustion

In early 2009 - Recommend technology for a Demo Plant

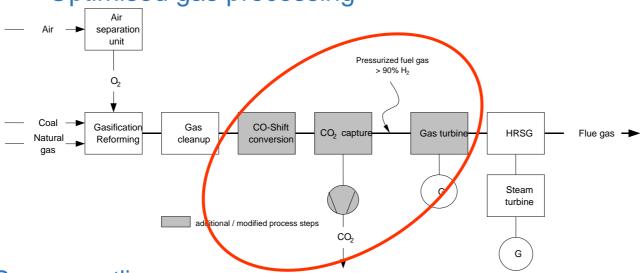
ENCAP – Planned in two phases



Pre-Combustion Decarbonisation Technologies

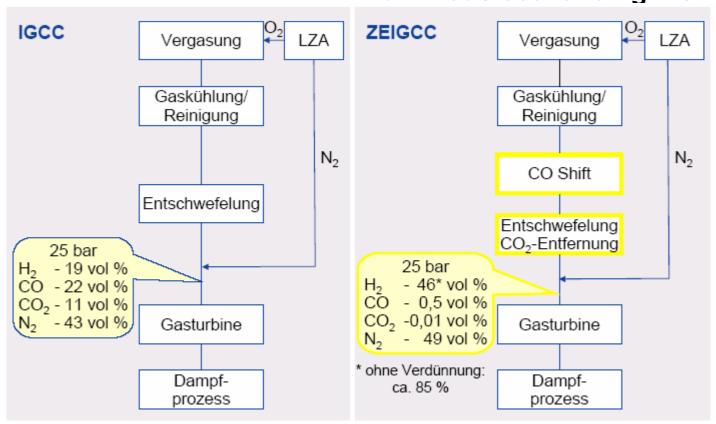
Key items

- Definition & analysis of plant concepts
- Optimising of CO-shift conversion
- H₂-rich combustion
- Development of capture unit integration with plant
- Development of overall plant outline specification



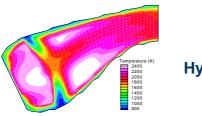
Pre-combustion decarbonisation development

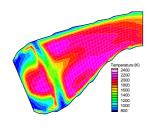
Bituminous coal and lignite


Process outline

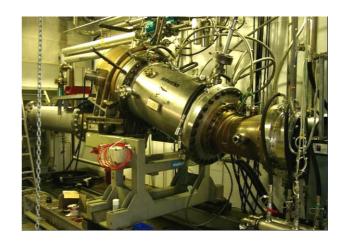
Integration of cryogenic oxygen production, CO₂ capture, gas and steam turbines into functioning power plants

ENCAP IGCC process verifications


Bituminous coal and lignite



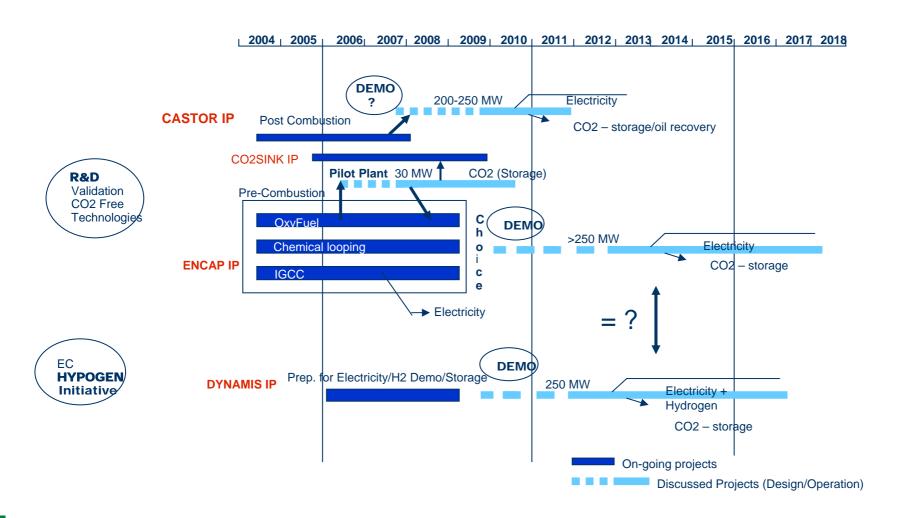
Pre-combustion decarbonisation


Lean-Premixed Combustion of H₂-rich fuels simulations and tests

Hydrogen

Natural gas

High pressure test rig DLR


Reference cases and guidelines for ENCAP technology concepts

A common framework is established to define:

- State of the art reference power plants without CO₂ capture
 - Natural gas-fired 400 MWe Combined Cycle Gas Turbine (Statoil / Siemens)
 - Hard coal / pet coke-fired 445 MWe Circulating Fluidised Bed (Alstom)
 - Hard coal-fired 600 MWe PF (Mitsui Babcock)
 - Lignite-fired 1000 MWe IGCC/PF (RWE / Vattenfall)
 - Lignite fired 380 MWe PF (PPC).
- Boundaries for economic analysis
- Procedure to evaluate power plants with CO₂ capture
- Design scenarios for CO₂ purity
- This will enable consistency in the benchmarking of CO₂ capture alternatives

ENCAP in relation to other IPs

Thanks for the attention

ENCAP - Deliverables Month 13-24

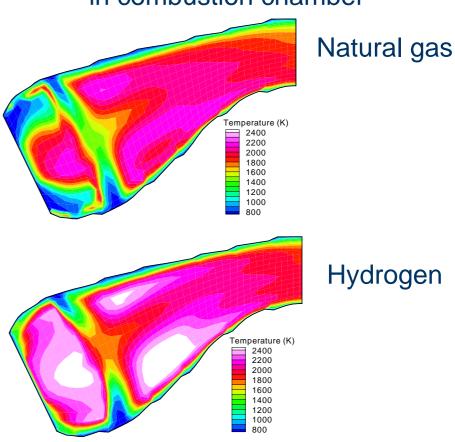
Dissemination levels:

PU=Public

PP=restricted to other programme participants (including the Commission Services)

RE=restricted to group specified by the consortium (including the Commission Services)

CO= confidential, only for members of the consortium (including the Commission Services)


Delivery no.	Deliverable name	WP no.	Due date	Actual/ forecast delivery date	Lead participant (codes from Annex 1)	Status	Dissemi- nation level
<u>D-1.1.2b</u>	If needed, an issue 2 of Guidelines and boundaries for technical and economical evaluations	1,1	20	17	3	Approved PMt	RE
<u>D-1.2.1</u>	Technical and economical comparison, evaluation and benchmarking of CO2 capture concepts	1,2	24	24	5	Approved PMt	RE
<u>D-1.3.3</u>	A model which is able to calculate cost effective solutions for CO ₂ free electricity production with respect to present and	1,3	18	21	20	Approved PMt	RE
D-2.1.4	Mass end Energy balances of all processes	2,1	15	18	5	Approved PMt	PP
D-2.1.5	Investment costs, technical and economic key figures	2,1	18	24	5	Approved PMt	PP
D-2.2.3	Detailed mass balance and energy consumption of the gas conditioning section	2,2	15	18	16	Approved PMt	PP
D-2.2.4	Process Flow diagrams of the gas conditioning	2,2	18	20	16	Approved PMt	PP
<u>D-2.3.3</u>	Report on limits of current burners using H ₂ -rich fuel mixtures	2,3	9	22	71.2	Approved PMt	PP
D-2.3.4	Analysis and reduction of the validated final reaction mechanism	2,3	15	16	18	Approved PMt M16	PP
D-2.3.5	EDC or assumed joint probability density function combustion model	2,3	18	26	18		PP
D-2.3.8	Report on flame structure data (at high pressure)	2,3	19	25	18		PP
D-2.3.6	Interim risk analysis and FMEA report	2,3	22	28	18		PP
D-2.3.7	Preliminary assessment of effects of H2-rich combustion on other components of the combustion system	2,3	22	28	18		PP
<u>D-2.4.3</u>	Heat flow diagrams of main concept variants (based on current concept)	2,4	15	18	18	Approved M18	PP
D-2.4.2	Final selection of steam integration in overall plant	2,4	16	20	18	Approved PMt	PP
<u>D-2.4.5</u>	Preliminary systems design schematics of syngas fuel system	2,4	18	19	18	Approved PMt	PP
D-2.4.6	Report about plant concept for variation of dilution parameters	2,4	22	30	18	Will be rewritten to D	PP
D-2.5.1	Preliminary documentation of complete plant for all cases	2,5	24	28	5		PP
D-3.1.2	Data set on NOx/SO2-formation and burnout for process layout, operation and validation of process simulation.	3,1	18	19	20	Approved PMt	СО
D-3.1.3	First report on identification and evaluation of oxyfuel flue gas parameters for various conditions.	3,1	21	25	20		СО

Hydrogen combustion

- Hydrogen as fuel behaves very different from natural gas
- Hydrogen is extremely reactive, a safe design of the combustion chamber for a stable flame with low nitrogen oxide emissions is a genuine challenge
- Hydrogen is known as gas turbine fuel in cases without severe restrictions on nitrogen oxide emissions or high demands on power plant efficiency

Simulation of temperature in combustion chamber



Vattenfall 30 MW PF Oxyfuel Pilot


VATTENFALL 🥯

Location of the pilot plant

© Vattenfall AB 1

30 MW oxyfuel pilot – preliminary layout

AB

VATTENFALL 🥯