ECCO

Selection of Case Studies

Charles Eickhoff (Progressive Energy)

ECCO Conference Trondheim, 14 June 2011

Structure of Presentation

Approach to Case Study selection Criteria Opportunities Selected Cases Sensitivities Summary

Approach

The approach taken to derive a set of case studies was as follows:

Ideas for the issues which the case studies should illustrate and from which useful economic and other conclusions could be drawn were derived through a series of brainstorming events

This collection process was carefully designed to include all partners:

- selection driven by partner sponsorship to ensure the cases are well grounded,
- collaboration with other bodies and projects to ensure consistency
- diversity in order to illustrate a broad range of important issues including economics and early mover barriers.

Cases do not necessarily represent the most likely initial chains but selected to illustrate the key factors which commercial companies will encounter in making those decisions

Criteria for case selection

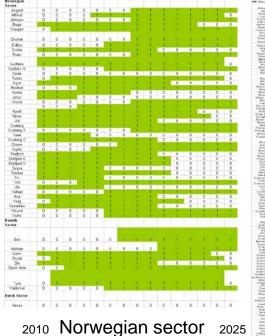
A set of questions from project workshops were distilled into criteria in the following categories:

- Technical
- Infrastructure / Geography
- Market and economic
- Legal / Social / Political
- Philosophical
- Tool Issues / Module Data

Weightings were applied according to perceived importance and then proposed cases were evaluated against these using their overall scores

	G	eographical Spread							
- 14		here is the main value from CO2 EOR located geographically?	4						
15	5 What are the main generic clusters of sources around the North Sea? 3								
_	<u> </u>	Economic							
2	21	Required rates of return, capture transport and EOR		3					
2	2	Cost of capital for different parts of chain?		3					
- 2	3 1	Who are the main actors / stakeholders? Capture, transport, storage?							
- 2	24 1								
2	!5 I	Balance between EOR and CO2 mitigation / storage		4					
4	6	What is the commercial role of aquifer storage in a CO2 EOR chain?		4					
2		Timing							
2	32	What can be done before 2020?		5					
2	_33			1					
3		Overview Issues							
3	38	6 How much additional/less fossil fuel will be consumed?		3					
	37	7 How much CO2 is required to meet the full potential for CO2 EOR, and over	what						
		timescale?		3					
	- 38	B EOR potential estimation (onshore/offshore)		3					
	- 39	How do we best realise the full potential in the North Sea?		4					
	- 40) How much CO2 will be avoided?		4					
	41	How much additional oil or gas will be produced?		4					
	- 42	2 What is the impact on production cost of electricity or other commodities?		4					
	- 43	3 What is the impact on employment?		3					
	44 Cost of CO2 captured/abated?								

Typical criteria



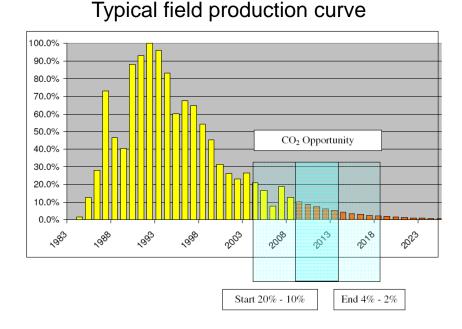
Focus on Early-movers

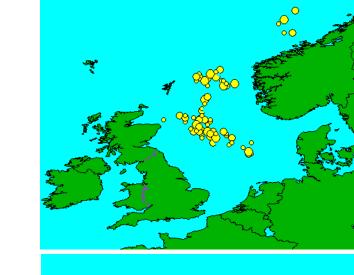
A key driver is the availability of a suitable oil field for EOR. Factors affecting this are:

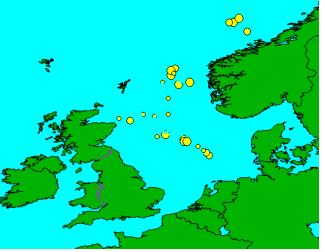
- Maturity of the field potential windows of opportunity are plotted for N sea fields
- Technical suitability of field
- Strategy of field owner

ECCO fortunate to be able to draw on the experience of MOL and INA in on-shore injection

2010 UK sector





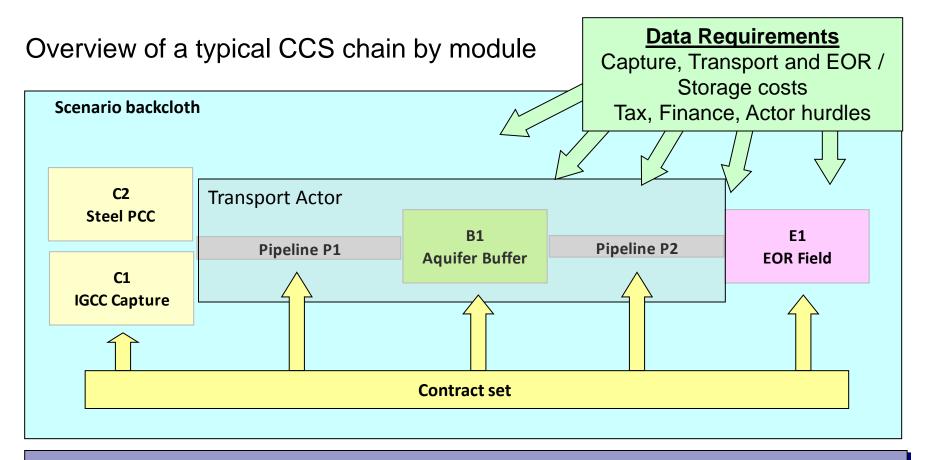

EOR Opportunities

N Sea oil fields were evaluated by extrapolating public production figures and then using a 4% peak production economic cut-off.

European value chain for CO

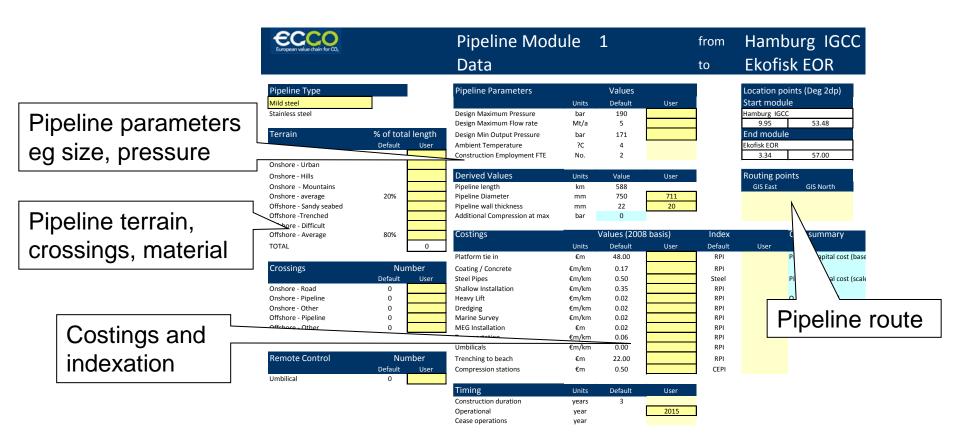
2025

Six case studies selected


Chosen to give a good range of geography, source, transport, storage

Case	Proposed	Source(s)	Transport	Buffer	Sink(s)
Baltic Basin	Fortum VRD	Mainly PCC around Baltic rim	Ship Pipeline	Hub in Skagerrak, Gassum off Denmark	EOR Northern N Sea
Hungary	MOL	Refinery & CCGT PCC New Coal PCC	Pipelines onshore	None	Ursa EGR Central EOR
Denmark, Germany	Fortum VRD Dong	Esbjerg PCC, Dutch and North Germany sources	Pipeline via Dornum Hub	German Bunter Aquifer	Danish chalk EOR & Ekofisk
Holland	Europipe TNO	Various in Rotterdam	Pipeline to DGF Pipeline to EOR	None	Dutch K/L sector & Ekofisk
UK East Coast	PEL	IGCCs & Steel PCC NE England cluster	Pipelines	N Sea Aquifer	Central N Sea EOR & Northern N Sea
Norway	SINTEF STATOIL	Mongstad CHP & Refinery	Pipeline	None	Norwegian JFB EOR

Setting up a Case Study



<u>Key Performance Indicators</u> including CO₂ stored, oil produced, employment etc and financial measures (NPV, IRR for components and whole chains, cost per ton stored....)

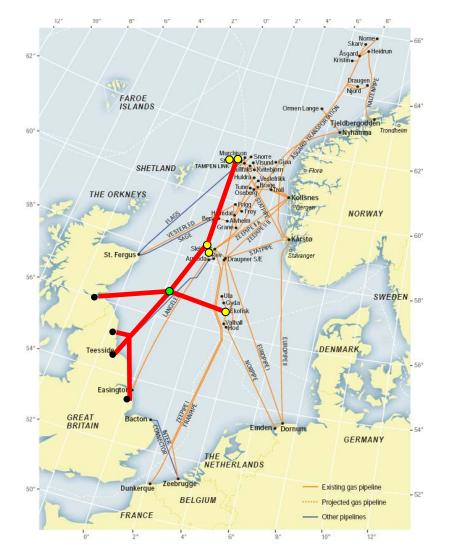
Example – Pipeline module input sheet

Default data provided by module with User ability to change

Costings – default module data

Flow	Diameter		Wall	Ноор		Additional capital costs for offshore pipeli	nes €m /km €	m
Mt/a	inches	mm	mm	MPa	Costings for	Platform tie in		48.00
					offshore	shallow Installation	0.35	186.01
0	6	152	6	241				
0.3	12	305	12	241		Heavy Lift	0.015	7.97
2	18	457	18	241		Dredging	0.02	10.63
5.4	22	559	22	241	¹ Pipeline diameter	Marine Survey	0.015	7.97
8.9	24	610	24		selection from	Transportation	0.015	7.97
11.1	28	711	28	241		Umbilicals	0.055	29.23
16.3	32	813	32	241	flow parameters	Trenching to beach		22
22.8	36	914	36	241		Materials - coating/concrete	0.17	90.35
30.5	44	1118	44	241		TOTAL		410.14
50.5	48	1219	48	241				

Coal PF Super-C Post-CC	663	Lignite Post-CC	680	CCGT Post-CC	520	IGCC Pre-CC	694	
	MW		MW		MW		MW	
Costings Default	€ m 2010	Costings Default	€m 2010	Costings Default	€m 2010	Costings Default	€m 2010	
Fuel Handling / Utilities	333	Fuel Handling / Utilities	340	Fuel Handling / Utilities	95	Fuel Handling / Utilities	341	
Boiler / HRSG	316	Boiler / HRSG	297	Boiler / HRSG	34	Gasifier	355	
Turbines & Generator	101	Turbines & Generator	99	Turbines & Generator	57	Boiler / HRSG	44	
Flue Gas Cleansing	131	Flue Gas Cleansing	141	Flue Gas Cleansing	188	Turbines & Generator	143	
CO2 Removal & Compression	363	CO2 Removal & Compression	384	CO2 Removal & Compression	74	Flue Gas Cleansing	183	/
						CO2 Removal & Compression	29	/
							۲.	
TOTAL Capex	1243	TOTAL Capex	1262	TOTAL Capex	448	TOTAL Capex	1094	
Fixed Opex	16.3	Fixed Opex	16.3	Fixed Opex	6.4	Fixed Opex	17.9	
Variable Opex (excl fuel)	0.00710	Variable Opex (excl fuel)	0.00741	Variable Opex (excl fuel)	0.00203	Variable Opex (excl fuel)	0.00637	


CC Power plant cost database for a cross-section of different power and industrial plant

User always retains ability to refine costing data

WP2.2: Case study example:

"UK case"

Attributes:

- Use of non-platform aquifer buffer
- EOR in abandoned CNS field
- Economics of extension to NNS EOR
- Add-in of Scottish cluster
- Link to CNS Chalk field

Sensitivities

A number of case sensitivities have also been established which are designed to illustrate interesting aspects of the CCS chain which are relevant to ECCO strategy recommendations

Financing		Infrastructure				
		Торіс	Question			
Торіс	Question	Bulk Pipeline	What are the outcomes/advantages			
Required contractual price levels between actors	What CO2 price is needed at the various points in the chain to become marginally economic?		of investing into [oversized] backbone structure?			
		Pipeline ownership and	How will governmental investment			
Impact of tax	Look at the impact of varying the oil field tax regimes	investments (open season suggestion)	into an oversized common infrastructure affect the economy o the chain and economies of			
Case study on impact of tax by ownership	Impact of ownership of pipelines by oil field operators on economics due		particular actors?			
	to tax regimes	Oversized Pipeline	What are the disadvantages / advantages of investing into oversized pipeline (and which			
Regulatory			dimension of the pipeline is the mos optimal)?			
Торіс	Question	Economics of sub-sea aquifer	What are the cost/benefits of including a sub-sea completed aquifer for buffering (one way)?			
Issue of field re- commissioning	How does recommissioning of an abandoned oil field affect the economics of the chain?	Offshore vs Onshore	What are the economics of onshore versus off shore pipelines?			
Licensing of field re- commissioning	Effect of delayed approval for recommissioning on the economics					
0	of the chain?	Flexibility of CO2 captured	what is the impact of fluctuations in amount of CO2 captured			
Policy						
Торіс	Question	Economics of long distant	Is it viable to fund a pipeline			
Effect of the global	How will a given CCS chains	extension for EOR	connection to the NNS?			
e nvironme nt	perform in a variety of global environments?	Influence of ETS C prices or oil price on economics of infrastructure	What distance of infrastructure car be supported at what carbon price and what oil price?			
Effect of the global	What type of CCS chain is most		*			
e nvironme nt	promising under a given global environment scenario?	Economics of additional connections	How economic is it to branch into a existing network?			

Summary

- A set of questions were created to underpin the ECCO themes
- Six Case studies have been established containing important aspects of early mover CCS chains
- Technical and cost data created to populate modules accuracy is down to the user
- Further sensitivities were devised to illustrate particular issues
- Cases and sensitivities currently being run to create data for final recommendations

