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Main goal
• Develop efficient adaptive finite element

techniques for complex models arising in
industrial applications.

• Particular focus on applications in solid
mechanics.

• Adaptivity should be done in an interactive
fashion in real time.
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Typical problem

Figure 1:Gearbox model 2.3 Mdofs
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Typical problem

Figure 2:Control housing 2.9 Mdofs
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Typical problem: features
• Problems haveseveral million dofs in the initial

coarse grid!
• Coarse grid model based onsimplified

geometric model with small details removed.
• Small details may be critical for stress levels.
• Enhanced local resolution necessary to compute

accurate stresses.
• Automatic residual based refinement may

manufacture models which are too large.
• Seek to minimize/avoid global solves on refined

grid.
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Submodeling
• Solve global coarse grid problem and store

solution.
• Identify area of interest interactively.
• Cut out suitable local model containing area of

interest.
• Compute boundary conditions from coarse grid

solution.
• Refine the mesh in the area of interest.
• Compute enhanced local solution by solving

local problem.

Mats G Larson – Chalmers – p.7



Submodeling: Example 1

(a) Global problem (b) Submodel
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Submodeling: Example 2

(c) Global problem (d) Definition of area of interest
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Submodeling: Example 2

(e) Submodel (f) Submodel mesh
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Submodeling: Interface

Figure 3:GUI for interactive submodeling
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Submodeling: Notation

Figure 4: The domainΩ, the submodelω, domain of

interestω0
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Submodeling: Elasticity
Findu : Ω → R3 such that

−∇ · σ = f in Ω,

σ = λ ∇ · uI + 2µε(u) in Ω,

u = gD onΓD,

n · σ = gN onΓN.

whereε(u) = (∇u+∇uT )/2 is the strain andλ andµ

are the Lame parameters.
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Submodeling: FEM
Global FEM: Find uH ∈ VH(Ω) such that

a(uH , v) = l(v) for all v ∈ VH(Ω)

Submodel FEM: Find uh ∈ V h
uH

(ω) such that

a(uh, v) = l(v) for all v ∈ Vh,0(ω)

whereV h
g ⊂ V is a finite element space of piecewise

polynomials withv = g on∂ω.

uh
H =

{
uH in Ω \ ω
uh in ω
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A posteriori error estimation
Contributions to error in submodel:

• Coarse grid error gives error in submodel
boundary conditions.

• Resolution in the submodel.
• Resolution of the geometry.

Seek to construct algorithms which balance these
three contributions.
A posteriori error estimates can be derived by duality
based methods.

Neglect geometry resolution for simplicity.
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Goal oriented error estimates
Objective: Letm(·) be a linear functional onV . We
seek to estimate the error

m(u) −m(uh
H)

in the functional in terms of the computed solution.
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Examples of functionals
• Average of error in subdomain

m(e) =

∫
ω

eψdx

• Average of error in derivative in subdomain

m(e) = −
∫

ω

e∂xψdx
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Typical weight functions
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(a) Point value
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(b) Derivative point value

Mats G Larson – Chalmers – p.18



Dual problem
To represent the error we introduce the dual problem:
Findφ ∈ V such that

m(v) = a(v, φ) all v ∈ V .
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Error representation
Settingv = e = u− uh

H in the dual problem we get

m(u) −m(uh
H) = m(e)

= a(e, φ)

= l(φ) − a(uh
H , φ)

= l(φ− πφ) − a(uh
H , φ− πφ)

+ l(πφ) − a(uh
H , πφ).

Here we used the linearity ofa(·, ·) andm(·) and
subtracted and added an interpolantπφ ∈ Vh of φ.

Note that the last term isnot zero due to variational

crime.
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Last term
The term

l(πφ) − a(uh
H , πφ)

only depends on the elements neighboring∂ω.

In fact:

l(πφ) − a(uh
H , πφ) = l(πφ− w) − a(uh

H , πφ− w)

for all w ∈ VH such thatw = 0 on∂ω.
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Elasticity: dual problem
Findφ : Ω → R3 such that

−∇ · σ = ψ in Ω,

σ = λ ∇ · φI + 2µε(φ) in Ω,

φ = 0 onΓD,

n · σ = 0 onΓN.

Takingψ = δx0
m controls the displacement error(u−

U)(x0) ·m.

Mats G Larson – Chalmers – p.22



Example: solution to dual
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Example: solution to dual
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Local dual problem
Idea: Derive an estimate based on

• Dual argument on the subdomain.
• A posteriori error estimate of error in boundary

condition.

Local dual problem: find φ : Ω → R3 such that

−∇ · σ = ψ in ω,

σ = λ ∇ · φI + 2µε(φ) in ω,

φ = 0 on∂ω.
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Error representation
We have∫

ω

eψ =

∫
ω

e · (−∇ · σ(φ))

=

∫
ω

∇ · σ(e) : ε(φ− πφ) +

∫
∂ω

e · (n · σ(φ))

First term is standard and second term can be
estimated using a global duality argument and
standard estimates∣∣∣∣

∫
∂ω

e · (n · σ(φ))

∣∣∣∣ ≤ C‖HαR(uH)‖

with α ≥ 3/2 (or a more detailed approach)
Mats G Larson – Chalmers – p.26



Elasticity: solution to primal
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Elasticity: solution to local dual

Figure 5:data = dipole×ex
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Elasticity: solution to local dual

Figure 6:data = dipole×ey Mats G Larson – Chalmers – p.29



Elasticity: solution to local dual

Figure 7:data = dipole×ey
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Mesh refinement
• Mesh refinementmust respect CAD geometry
• Otherwise wedo not get convergence to the true

solution and artificial stress concentrations may
occur.

Figure 8:Projection of new node to CAD geometry
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Mesh refinement
Basic principle:

• Find NURBS patches corresponding to the
triangles under refinement.

• When the coarse mesh is refined the new nodes
are projected to the true geometry using the
surface descriptions.

Requirements:
• Sufficiently good quality of initial grid.
• Not too coarse initial grid.

Alternative:
• Remesh the submodel. Useful for instance when

geometry changes locally.
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Mesh refinement: example

Figure 9:Sphere defining area of interest.Mats G Larson – Chalmers – p.33



Mesh refinement: example

Figure 10: Close up of sphere defining area of interest.Mats G Larson – Chalmers – p.34



Mesh refinement: example

Figure 11:Solid after three refinementsMats G Larson – Chalmers – p.35



Mesh refinement: example

Figure 12:Mesh after three refinementsMats G Larson – Chalmers – p.36



Conclusions and current work
Conclusions:

• Submodeling appears to be an attractive
technique for practical use.

• Initial a posteriori error estimates have been
derived.

• Mesh refinement techniques respecting CAD
geometry have been developed.

• Interactive environment developed.

Current work:
• Construct suitable adaptive algorithm choosing,

mesh size and size of subdomain.
• Couple the submodeling with local shape

optimization. Mats G Larson – Chalmers – p.37
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