Adaptive Submodeling

Mats G Larson

mgl@math.chalmers.se

Computational Mathematics, Chalmers

Mats G Larson – Chalmers – p.1

Outline and Contributors

Outline:

- Submodeling
- A posteriori Error Estimation for Submodeling
- Mesh refinement respecting geometry.

Contributors:

- Rickard Bergström
- August Johansson
- Klas Samuelsson

Funding: EU-ViSiCADE project, the Swedish Science Foundation, and the Foundation for Strategic Research.

Main goal

- Develop efficient adaptive finite element techniques for complex models arising in industrial applications.
- Particular focus on applications in solid mechanics.
- Adaptivity should be done in an interactive fashion in real time.

Typical problem

Figure 1: Gearbox model 2.3 Mdofs

Typical problem

Figure 2: Control housing 2.9 Mdofs

Typical problem: features

- Problems have **several million dofs** in the initial coarse grid!
- Coarse grid model based on **simplified geometric model** with small details removed.
- Small details may be critical for stress levels.
- Enhanced local resolution necessary to compute accurate stresses.
- Automatic residual based refinement may manufacture models which are too large.
- Seek to minimize/avoid global solves on refined grid.

Submodeling

- Solve global coarse grid problem and store solution.
- Identify area of interest interactively.
- Cut out suitable local model containing area of interest.
- Compute boundary conditions from coarse grid solution.
- Refine the mesh in the area of interest.
- Compute enhanced local solution by solving local problem.

Submodeling: Example 1

(a) Global problem

(b) Submodel

Submodeling: Example 2

(c) Global problem

(d) Definition of area of interest

Submodeling: Example 2

(e) Submodel

(f) Submodel mesh

Submodeling: Interface

<u> </u>	File
>>> MeruSystem:multiple.cop: call to closePeport is avoided due tonoreport or sustan call to one different of	Cuit Preunhofer Cuitereal control of the control o
gettingn nodes	This is the statusbar

Figure 3: GUI for interactive submodeling

Submodeling: Notation

Figure 4: The domain Ω , the submodel ω , domain of interest ω_0

Submodeling: Elasticity

Find $u: \Omega \to \mathbf{R}^3$ such that

$$-\nabla \cdot \sigma = f \quad \text{in } \Omega,$$

$$\sigma = \lambda \nabla \cdot uI + 2\mu\epsilon(u) \quad \text{in } \Omega,$$

$$u = g_D \quad \text{on } \Gamma_D,$$

$$n \cdot \sigma = g_N \quad \text{on } \Gamma_N.$$

where $\epsilon(u) = (\nabla u + \nabla u^T)/2$ is the strain and λ and μ are the Lame parameters.

Submodeling: FEM

Global FEM: Find $u_H \in V_H(\Omega)$ such that

 $a(u_H, v) = l(v)$ for all $v \in V_H(\Omega)$

Submodel FEM: Find $u^h \in V^h_{u_H}(\omega)$ such that

 $a(u_h, v) = l(v)$ for all $v \in V_{h,0}(\omega)$

where $V_g^h \subset V$ is a finite element space of piecewise polynomials with v = g on $\partial \omega$.

$$u_{H}^{h} = \begin{cases} u_{H} & \text{in } \Omega \setminus \omega \\ u^{h} & \text{in } \omega \end{cases}$$

A posteriori error estimation

Contributions to error in submodel:

- Coarse grid error gives error in submodel boundary conditions.
- Resolution in the submodel.
- Resolution of the geometry.

Seek to construct algorithms which balance these three contributions.

A posteriori error estimates can be derived by duality based methods.

Neglect geometry resolution for simplicity.

Goal oriented error estimates

Objective: Let $m(\cdot)$ be a linear functional on V. We seek to estimate the error

$$m(u) - m(u_H^h)$$

in the functional in terms of the computed solution.

Examples of functionals

• Average of error in subdomain

$$m(e) = \int_{\omega} e\psi dx$$

• Average of error in derivative in subdomain

$$m(e) = -\int_{\omega} e\partial_x \psi dx$$

Typical weight functions

Dual problem

To represent the error we introduce the dual problem: Find $\phi \in V$ such that

 $m(v) = a(v, \phi)$ all $v \in V$.

Error representation

Setting $v = e = u - u_H^h$ in the dual problem we get $m(u) - m(u_H^h) = m(e)$ $= a(e, \phi)$ $= l(\phi) - a(u_H^h, \phi)$ $= l(\phi - \pi\phi) - a(u_H^h, \phi - \pi\phi)$ $+ l(\pi\phi) - a(u_H^h, \pi\phi).$ Here we used the linearity of $a(\cdot, \cdot)$ and $m(\cdot)$ and subtracted and added an interpolant $\pi \phi \in V_h$ of ϕ . Note that the last term is **not zero** due to variational crime.

Last term

The term

$$l(\pi\phi) - a(u_H^h, \pi\phi)$$

only depends on the elements neighboring $\partial \omega$.

In fact:

$$l(\pi\phi) - a(u_{H}^{h}, \pi\phi) = l(\pi\phi - w) - a(u_{H}^{h}, \pi\phi - w)$$

for all $w \in V_H$ such that w = 0 on $\partial \omega$.

Elasticity: dual problem

Find $\phi: \Omega \to \mathbf{R}^3$ such that

$$\begin{split} -\nabla \cdot \sigma &= \psi \quad \text{in } \Omega, \\ \sigma &= \lambda \, \nabla \cdot \phi I + 2\mu \epsilon(\phi) \quad \text{in } \Omega, \\ \phi &= 0 \quad \text{on } \Gamma_{\mathrm{D}}, \\ n \cdot \sigma &= 0 \quad \text{on } \Gamma_{\mathrm{N}}. \end{split}$$

Taking $\psi = \delta_{x_0} m$ controls the displacement error $(u - U)(x_0) \cdot m$.

Example: solution to dual

Example: solution to dual

Mats G Larson – Chalmers – p.24

Local dual problem

Idea: Derive an estimate based on

- Dual argument on the subdomain.
- A posteriori error estimate of error in boundary condition.

Local dual problem: find $\phi : \Omega \to \mathbf{R}^3$ such that

$$\begin{aligned} -\nabla \cdot \sigma &= \psi \quad \text{in } \omega, \\ \sigma &= \lambda \; \nabla \cdot \phi I + 2\mu \epsilon(\phi) \quad \text{in } \omega, \\ \phi &= 0 \quad \text{on } \partial \omega. \end{aligned}$$

Error representation

We have

$$\begin{split} \int_{\omega} e\psi &= \int_{\omega} e \cdot (-\nabla \cdot \sigma(\phi)) \\ &= \int_{\omega} \nabla \cdot \sigma(e) : \epsilon(\phi - \pi\phi) + \int_{\partial \omega} e \cdot (n \cdot \sigma(\phi)) \end{split}$$

First term is standard and second term can be estimated using a global duality argument and standard estimates

$$\left| \int_{\partial \omega} e \cdot (n \cdot \sigma(\phi)) \right| \le C \| H^{\alpha} R(u_H) \|$$

with $\alpha \geq 3/2$ (or a more detailed approach)

Mats G Larson - Chalmers - p.26

Elasticity: solution to primal

Elasticity: solution to local dual

Figure 5: data = dipole $\times e_x$

Figure 6: data = dipole $\times e_y$

Elasticity: solution to local dual

Figure 7: data = dipole
$$\times e_y$$

Mesh refinement

- Mesh refinement **must respect CAD** geometry
- Otherwise we **do not get convergence** to the true solution and artificial stress concentrations may occur.

Figure 8: Projection of new node to CAD geometry

Mesh refinement

Basic principle:

- Find NURBS patches corresponding to the triangles under refinement.
- When the coarse mesh is refined the new nodes are projected to the true geometry using the surface descriptions.

Requirements:

- Sufficiently good quality of initial grid.
- Not too coarse initial grid.

Alternative:

• Remesh the submodel. Useful for instance when geometry changes locally.

Figure 9: Sphere defining area of intereston - Chalmers - p.33

Figure 10: Close up of sphere defining areamofiinterest.34

Figure 11: Solid after three refinements. Matsortarson - Chalmers - p.35

Figure 12: Mesh after three refinements^{-p.36}

Conclusions and current work

Conclusions:

- Submodeling appears to be an attractive technique for practical use.
- Initial a posteriori error estimates have been derived.
- Mesh refinement techniques respecting CAD geometry have been developed.
- Interactive environment developed.

Current work:

- Construct suitable adaptive algorithm choosing, mesh size and size of subdomain.
- Couple the submodeling with local shape optimization.