
Forward, reverse and Taylor AD by examples

Daniel Wilczak

Department of Mathematics
University of Uppsala, Sweden

and
Department of Computer Science
Jagiellonian University, Poland

The Automatic di�erentiation tools allows us to compute numerical values of derivatives of
a wide class of functions. These include explicit given functions, but also functions de�ned in
a more complicated way (implicit functions, local Taylor expansions of manifolds, solutions to
ODEs, Poincaré maps, etc.). Here we will present some very basic schemes for explicit given
functions.

By a simple function we mean a function f : Rn → Rm which is a �nite composition of
arithmetic operations +,−, ∗, and elemental functions sin, cos, exp, · · · .

1 Forward automatic di�erentiation.

1.1. One dimensional case.

The forward mode of AD is often implemented by means of operators and functions overloading
technique. Instead of computing on numbers, we perform computations on pairs (u, u′). The
�rst element will hold the actual value of some expression, the second component will hold the
derivative of this quantity with respect to the initial variable.

We de�ne the following operations on pairs of numbers (u, u′):

• (u, u′) ± (v, v′) = (u ± v, u′ ± v′),

• (u, u′) × (v, v′) = (uv, uv′ + u′v),

• (u, u′) ÷ (v, v′) = (u/v, (u′ − (u/v)v′)/v).

In a similar way we can de�ne operations for all elemental functions. For example

• sin(u, u′) = (sin(u), cos(u)u′),

• exp(u, u′) = (exp(u), exp(u)u′),

etc.

1

1.2. Example.

Let f(x) =
(x + 1)(x − 2)

x + 3
. We will compute the value of f(3) and f ′(3) using forward mode.

We replace each constant c in the formula de�ning f by the pair (c, 0) and the variable x by
the pair (x, 1). This means that the derivative of input variable x with respect to x is equal to
1 and the derivative of each constant is just zero.

Applying arithmetic de�ned on pairs we compute simultaneously the value and the derivative
of f at x = 3.

((3, 1) + (1, 0)) × ((3, 1) − (2, 0))

(3, 1) + (3, 0)
=

(4, 1) × (1, 1)

(6, 1)
=

(4, 5)

(6, 1)
=

(
2

3
,
13

18

)

1.3. Directional derivatives of multivariate functions.

Let f : Rn → R be a simple function and let us �x u, x ∈ Rn. We will show how we can easily
compute the numerical value of Df(x) · u. Let us de�ne the following function

g(t) = f(x + tu).

It is well known that
g′(0) = Df(x) · u.

Hence, we reduced the problem of computing Df(x) · u to the problem of computing the
derivative of an univariate function. We will apply already introduced method for univariate
functions. In order to compute g′(0) it is enough to evaluate g(0) in the arithmetic de�ned on
pairs. To this end, we replace t by the pair (0, 1) (recall we compute the derivative at t = 0)
and vectors x and u by

((x1, 0), (x2, 0), . . . , (xn, 0)), ((u1, 0), (u2, 0), . . . , (un, 0)),

respectively (here x and u are constant).

1.4. Example.

Let f(x1, x2, x3) =
x1 + x2x3 + 1

x1 + x3

. Let us �x x = (1, 2, 3) and u = (1, 4, 2). Proceeding as

described above we obtain

g(t) = f(1 + t, 2 + 4t, 3 + 2t) =
1 + t + (2 + 4t)(3 + 2t) + 1

(1 + t) + (3 + 2t)
.

Then we replace any occurrence of t by the pair (0, 1) and each constant c by (c, 0). With some
abuse of notation on f and g we obtain

g((0, 1)) = f((x1, u1), (x2, u2), (x3, u3))

=
(1, 1) + (2, 4) × (3, 2) + (1, 0)

(1, 1) + (3, 2)
=

(1, 1) + (6, 16) + (1, 0)

(4, 3)
=

(8, 17)

(4, 3)
=

(
2,

11

4

)
.

2

1.5. Full gradients of multivariate functions by forward mode.

In the previous section we have seen that the computation of all partial derivatives of a simple
function f : Rn → R at a point x ∈ Rn can be obtained by evaluation of Df(x) · ei, i = 1, . . . , n
where ei are vectors from the standard basis in Rn.

It turns out, however, that it is more e�cient to compute simultaneously several partial (or in
general directional) derivatives. To this end, we can extend the arithmetic de�ned on pairs to
the arithmetic de�ned on (m + 1)-dimensional vectors in the following way:

• (u, u1, u2, . . . , um) ± (v, v1, v2, . . . , vm) = (u ± v, u1 ± v1, . . . , um ± vm),

• (u, u1, u2, . . . , um) × (v, v1, v2, . . . , vm) = (uv, u1v + v1u, . . . , umv + vmu),

• (u, u1, u2, . . . , um) ÷ (v, v1, v2, . . . , vm) = (uv, (u1 − (u/v)v1)/v, . . . , (um − (u/v)vm)/v)

and similarly for elemental functions. Here, the �rst element of the vector will store the actual
value of an expression. The remaining elements will hold actual derivatives with respect to m
arbitrary chosen direction vectors.

Let us �x x ∈ Rn and m direction vectors u1, . . . , um ∈ Rn. In order to compute a vector

(Df(x) · u1, Df(x) · u2, . . . , Df(x) · um)

we replace in the formula for f

• each constant c by the sequence (c, 0, . . . , 0) ∈ Rm+1,

• each occurrence of xi, i = 1, . . . , n by the sequence (xi, u1,i, . . . , um,i),

and evaluate this expression in our vector arithmetic. In particular, to obtain just a gradient
of f we can set m = n and take ui = ei, where ei are vectors from the standard basis in Rn.

1.6. Example.

Let f(x, y) = x+y+1
xy−1

. We will compute the value and gradient of f at (2,−2). In this situation,

our directional vectors will be e1 = (1, 0) and e2 = (0, 1). Therefore, we replace each occurrence
of x by the vector (x = 2, 1, 0), and each occurrence of y by (y = −2, 0, 1). The constants c
will be replaced by (c, 0, 0). We have

(2, 1, 0) + (−2, 0, 1) + (1, 0, 0)

(2, 1, 0) × (−2, 0, 1) − (1, 0, 0)
=

(1, 1, 1)

(−4,−2, 2) − (1, 0, 0)
=

(1, 1, 1)

(−5,−2, 2)
=

(
−1

5
,
−3

25
,
−7

25

)
. (1)

Hence, f(2,−2) = −1
5
, ∂f

∂x
(2,−2) = −3

25
and ∂f

∂y
(2,−2) = −7

25
.

3

2 Reverse mode.

The reverse mode for computing derivatives seems a bit unnatural after the �rst look. We
will see, however, that backward accumulation of derivatives has in some situations signi�cant
advantages over the forward mode.

2.1. Example.

Consider a function f(x, y) = x+y+1
xy−1

. In the previous section we already computed derivatives

of f at (x, y) = (2,−2) using the forward mode.

Any simple function by its de�nition is a �nite composition of arithmetic operations and ele-
mental functions. Hence, it can be represented as a direct acyclic graph (DAG). In some cases,
the representation is not unique due to associativity rules of addition and multiplication, but it
is always possible to �nd some representation. In our case, the function f can be represented
by

x

v 1 = x + y v3=x*y

y

v 2 = v 1 + 1 v 4 = v 3 - 1

1

f = v 5 = v 2 / v 4

-1

On the graph we de�ned new intermediate variables vi, i = 1, . . . , 5. Given a point at which we
want to compute derivatives we can easily compute and store in the memory all the values
of the intermediate variables. We have

v1 = x + y = 2 − 2 = 0,

v2 = v1 + 1 = 0 + 1 = 1,

v3 = x ∗ y = 2 ∗ (−2) = −4,

v4 = v3 − 1 = −4 − 1 = −5,

f = v5 = v2/v4 = 1/(−5) = −1

5
.

Of course in the last line we computed the value of f at the point (2,−2). With some abuse of

4

notation on f we de�ne the following symbols

v̄i =
∂f

∂vi

.

Of course formally f is a function of variables x, y but we may think about v̄i's as a sensitivities
of f with respect to intermediate variable vi. By the de�nition

f(v5) = v5,

therefore v̄5 = 1. We can think about v5 as a function of v2 and v4 given by v5(v2, v4) = v2/v4.
Again 'overloading' the symbol f we see that

v̄2 =
∂

∂v2

(f(v5(v2, v4))) =
∂f

∂v5

· ∂v5

∂v2

= v̄5/v4 = 1/(−5) = −1

5
.

Similarly,

v̄4 =
∂

∂v4

(f(v5(v2, v4))) =
∂f

∂v5

· ∂v5

∂v4

= v̄5 ·
−v2

v2
4

= −v̄5 · v5/v4 = −1 · −1

5
/(−5) = − 1

25
.

We see that v2 is a function of v1 given by v2(v1) = v1 + 1. Therefore,

v̄1 =
∂f

v2

· ∂v2

∂v1

= v̄2 = −1

5
.

Similarly,

v̄3 =
∂f

v4

· ∂v4

∂v3

= v̄4 = − 1

25
.

There remains for us to accumulate derivatives towards the main input variables x and y. We
see that

∂f

∂x
(2,−2) = v̄1 ·

∂v1

∂x
+ v̄3 ·

∂v3

∂x
= v̄1 + v̄3 · y = −1

5
+

(
− 1

25

)
· (−2) = − 3

25
,

∂f

∂y
(2,−2) = v̄1 ·

∂v1

∂y
+ v̄3 ·

∂v3

∂y
= v̄1 + v̄3 · x = −1

5
+

(
− 1

25

)
· 2 = − 7

25
.

What we computed agrees with the results obtained from forward propagation (1).

Remarks:

• In the reverse mode we simultaneously compute partial derivatives of a dependent quantity
f with respect to all intermediate variables and in consequence with respect to all input
variables.

• The method does not have any over-computations which can appear in 'naive' implemen-
tation of the forward mode. In the forward propagation the initial vectors often contain
a lot of zeroes. In this case we propagate (and compute!) many zeroes until the vectors
of actual derivatives become dense. One can avoid this problem in forward propagation
but this requires some extra e�ort and more complicated implementation.

This e�ect does not exist in the reverse mode.

5

• The reverse accumulation is strongly recommended to compute derivatives of functions
Rn → Rm, where n >> m. Otherwise, the forward mode is usually faster and less memory
consuming.

3 The Taylor method for ODEs.

For a function p : R → Rn by p(k)(t) we will denote a vector of the k-th order derivatives of p

at t, i.e (p
(k)
1 (t), . . . , p

(k)
1 (t)).

By p[k](t) we will denote a vector of the k-th order Taylor coe�cients of p at t. Obviously
p(k)(t) = k!p[k](t).

3.1. Univariate Taylor ring arithmetic.

Let us �x an integer k ≥ 0. Let p : R → R be Ck-smooth function in a neighbourhood of
zero. We can encode its k-th order Taylor polynomial at zero as a (k + 1)-dimensional vector
(p[0], . . . , p[k]).

Let p, q ∈ Ck and assume that we know the Taylor coe�cients of p and q at zero up to order k.
It turns out that it is easy to compute k-th order Taylor approximations for p± q, p · q, p/q and
also for elemental functions sin(p), exp(p), etc. Below, we present an incomplete list of these
formulas (see also presentation by Warwick Tucker).

• If r = p ± q then r[i] = p[i] ± q[i], for i = 0, . . . , k.

• If r = p · q then r[i] =
∑i

j=0 p[j]q[i−j], for i = 0, . . . , k (convolution).

• If r = p/q then r[i] = 1
q[0]

(
p[i] −

∑i−1
j=0 r[j]q[i−j]

)
, for i = 0, . . . , k.

The computational complexity of these formulas is very small - all the operations can be perform
with the number of multiplications of the order O(k2).

3.2. Computing of Taylor series of the solutions to ODE's.

Consider the Cauchy problem
x′ = f(x), x(0) = x0, (2)

where f : Rn → Rn is a simple function. Since f is analytic, the solution to (2) exists in a
neighbourhood of zero. Let us denote this function by x : t → x(t).

Put F = f ◦ x. The function F is again an analytic function in a neighbourhood of zero, hence
it make sense to compute its Taylor coe�cients. According to (2) we have the following equality

6

of two power series

d

dt

(
∞∑
i=0

x[i](0)ti

)
=

∞∑
i=0

F [i](0)ti.

Di�erentiating left side and shifting the indexes we obtain

d

dt

(
∞∑
i=0

x[i](0)ti

)
=

∞∑
i=1

i x[i](0)ti−1 =
∞∑
i=0

(i + 1)x[i+1](0)ti.

Therefore, for i = 0, 1, 2, . . . there holds

x0 = x0,

x[i+1](0) =
1

i + 1
F [i](0). (3)

This iterative procedure together with the Taylor arithmetic allows us to compute the Taylor
expansion of x up to arbitrary order. Given already computed coe�cients x0, . . . , x[k](0)
we can compute F 0, . . . , F [k](0). By (3) we have computed the x[k+1]. Clearly, we can start
this iterative procedure from x0 = x0.

3.3. Example.

Consider a di�erential equation given by{
ẋ = y(x2 + y2)

ẏ = −x(x2 + y2)

The system is solvable. For an initial condition u0 = (x0, y0) the solution is given by

x(t) = r cos(α0 − r2t),

y(t) = r sin(α0 − r2t),

where r =
√

x2
0 + y2

0 and α0 = Arg(x0 + iy0).

Consider an initial condition u0 = (x0, y0) = (1,−1). The Taylor expansion of the solution at
u0 can be easily computed. We have

x(t) =
√

2 cos(2t + π/4) = 1 − 2t − 2t2 + · · · ,

y(t) = −
√

2 sin(2t + π/4) = −1 − 2t + 2t2 +

In the sequel we will see that the Taylor coe�cients of x(t) and y(t) can be computed without
any knowledge on the explicit solution and without computing derivatives of the vector �eld.

The vector �eld under consideration can be seen as a direct acyclic graph

7

x

v1=x2

y

v2=y2

v3=-x

v4=x2
+y2

F2=-xHx2
+y2L

F1=yHx2
+y2L

On the graph we have de�ned intermediate variables vi, i = 1, . . . , 4. The vi's are univariate
functions of one variable t. Our goal is to compute all Taylor coe�cients of x and y at zero.
Therefore, in what follows we will skip the arguments of x, y and vi's. The zero order coe�cients
of F can be computed by direct evaluation of the formula de�ning the vector �eld

x[0] = x0 = 1,

y[0] = y0 = −1,

v
[0]
1 = x[0] ∗ x[0] = 1,

v
[0]
2 = y[0] ∗ y[0] = 1,

v
[0]
3 = −x[0] = −1,

v
[0]
4 = v

[0]
1 + v

[0]
2 = 2,

F
[0]
1 = y[0] ∗ v

[0]
4 = −2,

F
[0]
2 = v

[0]
3 ∗ v

[0]
4 = −2.

According to (3), the last two numbers are the �rst Taylor coe�cients of x and y, respectively.
Hence

x[1] = F
[0]
1 = −2,

y[1] = F
[0]
2 = −2.

Now we will compute in the �rst order Taylor coe�cients of F1 and F2. Using Taylor arithmetic

8

we obtain

v
[1]
1 = 2 ∗ x[0] ∗ x[1] = −4,

v
[1]
2 = 2 ∗ y[0] ∗ y[1] = 4,

v
[1]
3 = −x[1] = 2,

v
[1]
4 = v

[1]
1 + v

[1]
2 = 0,

F
[1]
1 = y[0] ∗ v

[1]
4 + y[1] ∗ v

[0]
4 = −4,

F
[1]
2 = v

[0]
3 ∗ v

[1]
4 + v

[1]
3 ∗ v

[0]
4 = 4.

Again using (3) we obtain

x[2] =
1

2
F

[1]
1 = −2,

y[2] =
1

2
F

[1]
2 = 2.

Therefore, the beginning of the Taylor series of x and y are given by

x(t) = 1 − 2t − 2t2 + . . .

y(t) = −1 − 2t + 2t2 + . . .

which agrees with what we got from the explicit solution.

Remarks:

• In order to compute Taylor coe�cients of the solution to an ODE we do not need to
compute derivatives of the vector �eld!; we only compute the Taylor coe�cients of
the univariate function F = f ◦ x.

• Repeating the above scheme one can compute the Taylor coe�cients of the

solution up to arbitrary order.

• The implementation of the Taylor method for ODE's is easy by means of operators and
functions overloading.

• We do not need to re-implement the Taylor method for di�erent ODE's. The code is the
same; only the formula de�ning the vector �eld must be speci�ed. One can �nd e�cient
C++ implementations at [1, 2].

• The method is very fast. The number of multiplications grows quadratically with order
of the Taylor expansion.

9

References

[1] CAPD � Computer Assisted Proofs in Dynamics group, http://capd.ii.uj.edu.pl.

[2] FADBAD++ � Flexible Automatic di�erentiation using templates and operator overload-
ing in C++, http://www.fadbad.com.

10

