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Direct solution methods
Direct solution methods (Gauss elimination / LU factorization) for
solving linear systems are robust, but:

1 have very inefficient computational complexity: a system with N
unknowns requires O(N3) operations

2 have poor properties in terms of memory usage: pivot matrices in
GE and L and U factors are generally full

3 require a complete representation (linearization) of the problem in
the matrix, which is often not available or undesirable:

coupled problems: fluid-structure interaction,
electro-thermo-mechanics, etc. (coupling terms)
problems involving nonlocal operators (full matrices)
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Direct solution methods
Nonlinear problems: Given R : RN → RN , find u ∈ RN such that

R(u) = 0

Newton’s method: given initial approximation u0 ∈ RN , repeat for
n = 0, 1, 2, . . .:

Ad = −R(un) (T)

un+1 = un + d

with A := R′(un). If the tangent problem (T) is solved with a direct
method, then the nonlinearity is treated globally⇒ non-robust
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Iterative solution methods
Iterative solution methods can generally be formulated as
defect-correction processes∗. Consider

Au = b (L)

with A ∈ RN×N . Let Ã be a suitable approximation to A. The
defect-correction process reads:

Ãu0 = b (init. approx.)

Repeat for n = 1, 2, . . .

Ãun = Ãun−1 + (b− Aun−1) (DeC)

(Note: also possible for nonlinear problems)
∗K. Bøhmer, P.W. Hemker, and H.J. Stetter, The defect correction approach,
Computing 5 (1984), 1-32.
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Relaxation methods

Relaxation methods
a class of iterative solution procedures in which (blocks of) equations
are solved consecutively⇒ only small problems need to be inverted
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Relaxation methods: example

Gauss-Seidel relaxation for Poisson’s equation in 1D
Set Ω = (0, `). Consider

−∆u = f in Ω

u = 0 at ∂Ω = {0, `}
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Relaxation methods: example

Gauss-Seidel relaxation for Poisson’s equation in 1D
Standard discretization: partition Ω by point {0, h, 2h, . . . ,Nh(:= `)}. Let
ui denote approximation to u(ih), defined by

−ui+1 − 2ui + ui−1

h2 = f (ih) i ∈ {1, 2, . . . ,N − 1}

ui = 0 i ∈ {0,N}

u1
0 1 2 N-1 N

u2
h

0 l
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Relaxation methods: example

Gauss-Seidel relaxation for Poisson’s equation in 1D
⇔

− 1
h2


−2 1 0
1 −2 1 0

0
. . . . . . . . . 0
0 1 −2 1

0 1 −2




u1
u2
...

uN−2
uN−1

 =


f (h)
f (2h)

...
f ((N − 2)h)
f ((N − 1)h)


⇔

Au = b
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Relaxation methods: example

Gauss-Seidel relaxation for Poisson’s equation in 1D
Gauss-Seidel relaxation: given initial approximation
u0 = (u0

1, . . . , u
0
N−1), successively solve equations pointwise:

−
un−1

i+1 − 2un
i + un

i−1

h2 = f (ih) i = 1, 2, . . . ,N − 1

for n = 1, 2, . . ..

u1
n

0 1 2 N-1 N

u2
n

h
0 lu3

n-1
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Relaxation methods: example

Gauss-Seidel relaxation for Poisson’s equation in 1D
⇔

Ãun = Ãun−1 + (b− Aun−1) (DeC)

with

Ã = − 1
h2


−2 0 0
1 −2 0 0

0
. . . . . . . . . 0
0 1 −2 0

0 1 −2


(Ã is lower triangular⇒ solve by forward substitution)
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Iterative methods: Example

Partitioned methods for fluid-structure interaction
Structure of FSI problems (within each time step):(

Ass Asf

Afs Aff

)(
us

uf

)
=

(
bs

bf

)
Properties:

coupling matrices Asf and Afs respectively correspond to continuity
of tractions and displacements
generally, coupling matrices have complicated structure (nonlocal,
shape derivatives) and/or are unavailable explicitly (code
modularity)
XXL systems
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Iterative methods: Example

Partitioned methods for fluid-structure interaction
Partitioned iterative solution methods:

!uid

structure

!uid

structure

!uid

structure

tn tn+1 tn+2tn-1

Ãun = Ãun−1 + (b− Aun−1) (DeC)

with

Ã =

(
Ass 0
Afs Aff

)
(Ã is block-lower triangular matrix⇒ solve by forward substitution)
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Iterative methods

Convergence
Let ū denote solution of Aū = b. Define error en = un − ū. Then

Ãun = Ãun−1 + (b− Aun−1) (DeC)

⇔ (add partition of zero)

Ã(un − ū) = Ã(un−1 − ū) + (Aū− Aun−1)

⇔
Ãen = Ãen−1 − Aen−1

⇔
en =

(
I − Ã−1A

)
en−1
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Iterative methods

Convergence

‖en‖
‖en+1‖

≤
∥∥I − Ã−1A

∥∥
Fast convergence if Ã is “close to” A

Monotonous convergence if
∥∥I − Ã−1A

∥∥ < 1

Often, I − Ã−1A has many eigenvalues close to zero and relatively
few large eigenvalues⇒ the iterative method efficiently confines
the error to a small subspace (but still gives slow convergence)
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Iterative methods

Convergence of combined iterative methods
Sequential application of two distinct iterative methods with
approximate operators Ã1 and Ã2 yields:

en =
(
I − Ã−1

2 A
)(

I − Ã−1
1 A

)
en−1

Effective convergence is obtained by combining differ-
ent iterative methods that reduce different parts of the
error spectrum.
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Multigrid

Concept
Iterative methods (in particular relaxation methods) generally∗

effectively reduce oscillatory (high frequency) components of the error.
The remaining smooth (low-frequency) part of the error can be
effectively represented on a coarse mesh, and can be reduced by
coarse-grid correction.

the common terminology is frequency, although wave number is
more appropriate
∗generally does not mean always: problems near boundaries
(re-entrant corners), non-elliptic problems, . . .
for difficult problems, the development of a good smoother (and a
good coarse-grid correction) is a daunting challenge
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Fourier analysis

Historcal note
Fourier analysis, similar to Von-Neumann stability analysis, was
developed as an analysis tool for MG methods by Brandt in the late
1970s.
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Fourier analysis: Hilbert-space setting
Consider an interval on the real line, Ω = (0, `). Denote by L2(Ω,C) the
space of square-integrable complex functions, equipped with inner
product

(u, v)L2(Ω,C) =

∫
Ω

u(x)v∗(x) dx

L2(Ω,C) is a separable Hilbert space: there exists a countable basis
{a1, a2, . . .} of L2(Ω,C). In particular, the Fourier modes

ak(x) = `−1/2eι2π kx/`

form a basis of L2(Ω,C). Conversely, any function u ∈ L2(Ω,C) can be
represented as

u(x) =

∞∑
k=−∞

ûkak(x) with ûk = (u, ak)L2(Ω,C)
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Fourier analysis: Grid functions
Let {0, h, 2h, . . . ,Nh(:= `)} denote a uniform partition of Ω. We call
u(·) : {0, 1, . . . ,N} → R a grid function.

u1
0 1 2 N-1 N

u2
h

0 l
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Fourier analysis: Grid functions
Let {0, h, 2h, . . . ,Nh(:= `)} denote a uniform partition of Ω. We call
u(·) : {0, 1, . . . ,N} → R a grid function.

Nyquist-Shannon theorem
If and only if a function u : (0, `)→ R contains no wave numbers higher
than `/2h (wave length ≥ 2h), then it is uniquely determined by its
values on a grid with mesh size h.
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Fourier analysis: Grid functions

Nyquist-Shannon theorem
If and only if a function u : (0, `)→ R contains no wave numbers higher
than `/2h (wave length ≥ 2h), then it is uniquely determined by its
values on a grid with mesh size h.

Aliasing
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Fourier analysis: Grid functions

Corollary
In examining grid functions on a uniform mesh with mesh parameter h,
we can restrict our attention to

u(x) =

`/2h∑
k=−`/2h

ûk`
−1/2eι2π kx/`

⇒
uj = u(jh) =

∑
θ∈Θ

ˆ̂uθ eι θj

with

Θ =

{
− π,−π +

2π
N
,−π +

4π
N
, . . . , π − 2π

N
, π

}
⊂ [−π, π]
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Convergence analysis: example
Recall discretization of Poisson problem:

− ūi+1 − 2ūi + ūi−1

h2 = f (ih) i ∈ {1, 2, . . . ,N − 1} (D)

ūi = 0 i ∈ {0,N}

and the Gauss-Seidel relaxation

−
un−1

i+1 − 2un
i + un

i−1

h2 = f (ih) i = 1, 2, . . . ,N − 1 (GS)

Define relaxation error by en
(·) = un

(·) − ū(·). Subtract (D) from (GS):

en−1
i+1 − 2en

i + en
i−1

h2 = 0 i = 1, 2, . . . ,N − 1 (E)
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Convergence analysis: example

en−1
i+1 − 2en

i + en
i−1

h2 = 0 i = 1, 2, . . . ,N − 1 (E)

Insert the Fourier expansion:

en
i =

∑
|θ|≤π

ên
θe
ιθi

⇒
ên−1
θ eιθ − 2ên

θ + ên
θ e−ιθ = 0

⇒ ∣∣ên
θ

∣∣∣∣ên−1
θ

∣∣ ≤
∣∣∣∣ eιθ

2− e−ιθ

∣∣∣∣ (error amplification)
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Convergence analysis: example

∣∣ên
θ

∣∣∣∣ên−1
θ

∣∣ ≤
∣∣∣∣ eιθ

2− e−ιθ

∣∣∣∣

θ

Harald van Brummelen (TU/e) Basics of MG SINTEF winter school 2011 13 / 32



Observations
1 The iteration is stable: the amplification factor ≤ 1 for all
θ ∈ [−π, π].

2 It holds that

θ ∈ Θ :=

{
− π,−π + 2π

h
`
, . . . ,−2π

h
`
, 2π

h
`
, . . . , π − 2π

N
, π

}
the constant component, ê0, is zero on account of boundary
conditions. Therefore,

sup
θ∈Θ

∣∣∣∣ eιθ

2− e−ιθ

∣∣∣∣ = 1− O(h2) as h→ 0

This implies that the convergence rate deteriorates as the mesh is
refined!
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Observations

2 h/l
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Observations (cont’d)
3 The Gauss-Seidel relaxation procedure yields fast convergence

for high-frequency components in the error, and very slow
convergence for low frequency components

θ

Harald van Brummelen (TU/e) Basics of MG SINTEF winter school 2011 14 / 32



Illustration
Set Ω = (0, 1). Consider the Poisson problem with f = 0 and
u(0) = u(`) = 0 (⇒ ū = 0). Set N = 210 and u0

(·) according to:

u0
i = sin(2πxi) + sin(8πxi) + sin(32πxi) + sin(128πxi)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4

2

0

2

4

x

Harald van Brummelen (TU/e) Basics of MG SINTEF winter school 2011 15 / 32



Illustration

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
4

3

2

1

0

1

2

3

4

 

 

n=0
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Illustration

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

2

1

0

1

2

3

n=101
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Illustration

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
3

2

1

0

1

2

3

n=102
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Illustration

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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1
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1

1.5

n=103
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Illustration

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1
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1

n=104
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Illustration
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Coarse-grid function
Consider a coarse grid with mesh size H = 2h (standard coarsening).
On such a grid, we can represent all functions with wave numbers up
to `/2H = `/4h (Nyquist-Shannon Thm.):

uH(x) =

`/2H∑
k=−`/2H

ûH
k `
−1/2eι2π kx/` =

`/4h∑
k=−`/4h

ûH
k `
−1/2eι2π kx/`

If we evaluate uH as on the fine grid, by comparison, there exist
coefficients ûH

θ such that

uH
j = uH(jh) =

∑
θ∈Θ

ûH
θ eι θj

with
Θ =

{
− π

2
,−π

2
+

2π
N
, . . . ,

π

2
− 2π

N
,
π

2

}
⊂
[
− π

2
,
π

2

]
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Coarse-grid correction

Coarse-grid correction (concept)
If we can construct the coarse-grid function such that ûH

θ = ûh
θ for

|θ| ≤ π/2, then on the fine grid (h), only the error components with
π/2 ≤ |θ| ≤ π have to be resolved by relaxation!

1 relaxation gives very effective error reduction for π/2 ≤ |θ| ≤ π:

sup
π/2≤|θ|≤π

∣∣∣∣ eιθ

2− e−ιθ

∣∣∣∣ =

∣∣∣∣ eιπ/2

2− e−ιπ/2

∣∣∣∣ = 0.447 . . .

2 the mesh dependence of the convergence behavior of
Gauss-Seidel relaxation appears in the limit θ → 0⇒ relaxation +
coarse-grid correction gives mesh-independent convergence
behavior
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Coarse-grid correction

2 h/l

coarse-grid
correction

relaxationrelaxation
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Restriction and Prolongation
Denoting by Vh and VH the spaces of fine- and coarse-grid functions,
we require transfer operators between Vh and VH.

Prolongation & restriction

P : VH → Vh (prolongation)

R : Vh → VH (restriction)

P and R are also often denoted by Ih
H and IH

h , respectively
Generally, R = P∗ (restriction is adjoint/transpose of prolongation)
General requirement: R ◦ P = Id in VH
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Restriction and Prolongation

Prolongation: example

uh
i =

{
uH

i/2 i even
1
2 uH

(i−1)/2 + 1
2 uH

(i+1)/2 i odd

h

H

1/2 1/2 1/2 1/2

1 1

1/21/2

i

i/2
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Restriction and Prolongation

Restriction: example

uH
i = 1

4 uh
2i+1 + 1

2 uh
2i + 1

4 uh
2i−1

h

H

1/4 1/41/2 1/4 1/41/2
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Restriction and Prolongation

Remarks
1 Because much of the MG theory was historically developed in a

finite-difference context, restriction and prolongation operators are
often interpreted as point-wise operators. In a finite-element
context, variational projection is more natural.

2 Note that R = P∗ does not mean that the matrix of R is the
transpose of the matrix of P.

3 Depending on the PDE, P and R have to satisfy certain
conditions∗. These are rather obvious in the FEM context
(Sobolev-space projections).

∗P. Hemker, On the order of prolongation and restriction in multigrid procedures, J. Comm. Appl.
Math. 32 (1990), 423-429.
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Coarse-grid equations: linear problems
Given a (relaxed) approximation ũh ∈ Vh, define the residual as:

rh(ũh) = f h − Ahũh

The error eh := ũh − ūh satisfies

Aheh = rh(ũh)

A coarse-grid approximation eH ∈ VH to eh ∈ Vh can be computed from:

AHeH = Rrh(ũh)

This approximation can be used to correct the fine-grid
approximation ũh according to:

ũh + PeH
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Correction scheme: MG for linear problems

Correction scheme
Given initial approximation uh,0 ∈ Vh, repeat for n = 1, 2, . . .

1 Perform ν GS iterations:

ũh,n = GSνuh,n−1

2 Construct (and restrict) fine-grid residual: rh(ũh,n) = f h − Ahũh,n

3 Solve coarse-grid-correction problem (by approximation):

AHeH = Rrh(ũh,n)

4 Prolongate and apply correction:

uh,n = ũh,n + PeH
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Correction scheme: MG for linear problems

Remarks
1 Multigrid by recursion: the coarse-grid problem can again be

approximated by smoothing and coarse-grid correction
2 Post-smoothing (after the coarse-grid correction) is then applied to

ensure smoothness of the correction before the prolongation
3 How should the coarse-grid operator be constructed? The natural

choice is AH = RAhP (Galerkin projection). This is automatic in
Galerkin FEM.
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Correction scheme: MG for linear problems

V-cycle

l=0

l=1

l=2

l=M

l=M-1

1

1

1

1

0

2

2

2

2
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Illustration: two-grid convergence

Testcase
Set Ω = (0, 1). Consider:

−∆u = 0 in Ω

u = 0 at ∂Ω = {0, 1}

Set N = 210 and u0
(·) according to:

u0
i = sin(2πxi) + sin(8πxi) + sin(32πxi) + sin(128πxi)

Perform ν = 8 GS relaxations followed by a coarse-grid correction.
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Illustration: two-grid convergence
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Illustration: two-grid convergence
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Illustration: two-grid convergence
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Illustration: two-grid convergence
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Illustration: two-grid convergence
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Illustration: two-grid convergence
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Illustration: two-grid convergence
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Illustration: two-grid convergence
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Illustration: two-grid convergence
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Illustration: two-grid convergence
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Illustration: two-grid convergence
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Illustration: two-grid convergence
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Coarse-grid equations: non-linear problems
The error relation applied in the correction scheme,

Aheh = f h − Ahũh

is invalid for nonlinear problems:

Ah(eh + ūh) 6= Aheh + Ahūh

Harald van Brummelen (TU/e) Basics of MG SINTEF winter school 2011 25 / 32



Coarse-grid equations: non-linear problems
Consider the decomposition Vh = VH ⊕ V⊥. Let ũh ∈ Vh denote a
post-relaxation approximation.

1 Since the error in ũh is smooth:

ũh − Rũh ≈ ūh − Rūh ∈ V⊥

(The projection of ũh onto V⊥ (oscillatory component) is close to
the projection of the actual solution)

2 So, we require uH ∈ VH such that

Ah(uH + (ũh − Rũh)
)

= f h (∗)

but this is not a useful equation for uH (ill posed).
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Coarse-grid equations: non-linear problems
3 To obtain a meaningful coarse-grid equation

1 project (∗) onto VH:

RAh(uH + (ũh − Rũh)
)

= Rf h (∗H)

2 perform a defect-correction step with approximate operator

RAh(uH + (ũh − Rũh)
)
≈ R̃Ah

(
uH + (ũh − Rũh)

)
:= AHuH

and initial estimate ũH = Rũh

AHuH = AHRũh + R(f h − Ahũh)

4 The approximation uH can be used to correct the fine-grid
approximation ũh according to:

ũh + P(uH − Rũh)
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Coarse-grid equations: non-linear problems

Remarks
1 The equation

AHuH = AHRũh + R(f h − Ahũh) (FAS)

is called the (coarse-grid equation of) the Full-Approximation
Scheme (Note: not the error but the solution itself is approximated)

2 Multigrid recursion in same manner as for linear problems
3 The derivation is much more elegant in a variational setting

(Galerkin FEM)⇒ FAS-MG directly related to multiscale
formulations
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Coarse-grid equations: non-linear problems

Full-Approximation Scheme: dual perspective
If ũh = ūh then

AHuH = AHRũh + R(f h − Ahũh) (FAS)

Because f h − Ahūh = 0, the correction equation (FAS) implies

AHuH = AHRūh ⇔ uH = Rūh

⇒ in the multigrid process, the coarse-grid solution converges to the
restriction (projection) of the fine-grid solution

⇒ interpretation: the right-hand side in (FAS) represents the effect of
fine scales (in V⊥) on the coarse-grid solution
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Full Multi-Grid (FMG)

Coarse-grid prediction
The coarse grid can also be used to construct an initial approximation
for the fine grid.

1 Solve the H-grid problem:

AHuH = f H

2 Construct an initial approximation for h-grid by prolongation:

uh,0 = PuH
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Full Multi-Grid (FMG)

Remarks
1 Of course, the coarse-grid prediction can again be applied

recursively
2 Since PuH is only an initial approximation, it is not necessary to

fully resolve uH: a suitable approximation will do
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Full Multi-Grid (FMG)
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Challenges

‘Theory and practice are the same in theory;
in practice, they are not’

≠
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Challenges

When MG does not (trivially) work . . .

1 Non-elliptic problems: hyperbolic PDEs, integro-differential
equations, . . .

2 Anisotropic problems: direction dependent coefficients (and
smoothing)

3 Near boundaries: corner singularities, non-linear BCs, . . .
4 Indefinite problems: Helmholtz-type equations, standing waves,
. . .
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Current developments

Research directions
1 p-multigrid: applying MG to high-order discretizations and using

low-order corrections
2 Algebraic Multi Grid (AMG): black-box multigrid, providing MG as

standard preconditioner/solver, similar to LU factorization
3 Applications
4 Combination with optimization
5 . . .
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