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Variational formulations
Consider:

1 An open bounded domain Ω ⊂ Rd

2 A Hilbert space U ⊂ L2(Ω) with inner product (·, ·)U (typically,
Sobolev spaces)

3 The generic variation problem:

Find u ∈ U : a(u, v) = b(v) ∀v ∈ U (P)

with a : U × U → R a (coercive and) bounded bilinear form and
b : V → R a bounded linear form

Harald van Brummelen (TU/e) MG miscellaneous SINTEF winter school 2011 3 / 33



Variational formulations

Example: variational formulation of Poisson’s problem

−∆u = f in Ω

u = 0 at ∂Ω

⇒
1 U = H1

0(Ω) =
{

u ∈ L2(Ω) : ∇u ∈ L2(Ω,Rd), u|∂Ω = 0
}

2 a(u, v) =

∫
Ω
∇u ·∇v dx b(v) =

∫
Ω

fv dx

associated with a and b are an operators A : U → U′ and a functional b:

a(u, v) = 〈v,Au〉U,U′ b(v) = 〈v, b〉U,U′
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Galerkin methods

Conforming approximation spaces
Let {Ul} denote a sequence of finite-dimensional asymptotically-dense
nested subspaces of U:

1 U0 ⊂ U1 ⊂ . . . ⊆ U (nesting)
2 Ul → U as l→∞ (asymptotic density)

for all u ∈ U and all ε > 0 exists l := lε,u s.t. inf
w∈Ul
‖u− w‖U < ε
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Galerkin methods

Example
The standard hat-functions on a sequence of hierarchically refined
meshes are nested and asymptotically dense in H1.

l=0

l=1

l=2
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Galerkin methods

Galerkin formulation
Consider Ul ⊂ U. The Galerkin approximation of (P) is:

Find u ∈ Ul : a(u, v) = b(v) ∀v ∈ Ul (Pl)
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Galerkin methods

Galerkin formulation
Consider Ul ⊂ U. The Galerkin approximation of (P) is:

Find u ∈ Ul : a(u, v) = b(v) ∀v ∈ Ul (Pl)

Remarks
1 boundedness and coercivity transfer to subspaces: if (P) is

well-posed, then so is (Pl)
2 Convergence by asymptotic density: ul → u as l→∞
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The VMS paradigm
Consider the additive decomposition U = Ul ⊕ U⊥l (or Ul+1 = Ul ⊕ U⊥l )
The variational problem can be decomposed into: Find ū ∈ Ul

(coarse-scale component) and û ∈ U⊥l (fine-scale component) s.t.∗:

a(ū, v̄) + a(û, v̄) = b(v̄) ∀v̄ ∈ Ul

a(ū, v̂) + a(û, v̂) = b(v̂) ∀v̂ ∈ U⊥l

The coarse-scale problem can be recast into

Find ū ∈ Ul : a(ū, v̄) = b(v̄)− a(û, v̄) ∀v̄ ∈ Ul (VMS)

The term −a(û, v̄) represents the effect of the fine scales on the coarse
scales.
∗T.J.R. Hughes, Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation,
subgrid scale models, bubbles and the origins of stabilized methods, Comput. Methods Appl.
Mech. Engrg. 127 (1995), 387–401.
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The VMS paradigm: interpretation

Orthogonal projections
The orthogonal projection PX onto a subspace X ⊂ U is implicitly
defined via the inner product on U:

PXu ∈ X :
(
PXu, v

)
U = (u, v)U ∀v ∈ X

Consider an arbitrary u ∈ U, with additive decomposition u = u0 + u1,
u0 ∈ Ul and u1 ∈ U⊥l . By definition:

u0 = PUlu u1 = PU⊥l
u =

(
Id− PUl

)
u
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The VMS paradigm: interpretation

VMS interpretation
Implicit in the splitting ū ∈ Ul and û ∈ U⊥l and the VMS equation:

a(ū, v̄) = b(v̄)− a(û, v̄) ∀v̄ ∈ Ul (VMS)

is ū = PUlu with u the actual solution to (P)

⇒ the term −a(û, v̄) in the rhs ensures that the approximation ū is the
U-projection of the actual solution onto Ul.
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The VMS paradigm: interpretation

VMS interpretation
Implicit in the splitting ū ∈ Ul and û ∈ U⊥l and the VMS equation:

a(ū, v̄) = b(v̄)− a(û, v̄) ∀v̄ ∈ Ul (VMS)

is ū = PUlu with u the actual solution to (P)

⇒ the term −a(û, v̄) in the rhs ensures that the approximation ū is the
U-projection of the actual solution onto Ul.

VMS challenge
Derive an (explicit/analytical) model −a(û(ū), v̄) for −a(û, v̄)
(‘fine-scale Green’s function’)
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The VMG paradigm

Smoother
Reconsider the splitting Ul+1 = Ul ⊕ U⊥l (or U = Ul ⊕ U⊥l ). Let û ∈ U⊥l
denote the fine scale component û = (Id− PUl)u of the actual solution.
A smoother S : Ul+1 → Ul+1 is characterized by the property:∥∥(Id− PUl

)
Sǔ− û

∥∥
U ≤ C

∥∥(Id− PUl

)
ǔ− û

∥∥
U ∀ǔ ∈ Ul+1

with C a small constant.

⇒ The smoother provides an improved (very good ?) approximation of
the fine-scale component!
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The VMG paradigm

Variational Multi-Grid
Given an initial approximation ǔ ∈ Ul+1,

1 Perform a smoothing step: ǔ 7→ Sǔ

2 Insert (Id− PUl)Sǔ as approximation of the fine-scale component
into the VMS equation for the coarse-scale component:

a(ū, v̄) = b(v̄)− a((Id− PUl)Sǔ, v̄) ∀v̄ ∈ Ul (CG)

3 Update ǔ according to Sǔ + (ū− PUlSǔ)
(replace coarse-scale component of Sǔ by ū)
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The VMG paradigm

Remarks
1 Rearranging (CG) yields:

a(ū− PUlSǔ, v̄) = b(v̄)− a(Sǔ, v̄) =: 〈r(Sǔ), v̄〉 ∀v̄ ∈ Ul (CS)

with r(·) : U → U′ the residual functional
⇒ (CG) in VMG is the variational form of the coarse-grid
correction equation in the correction scheme

2 In the variational formulation, prolongation is intrinsically defined
by injection and restriction coincides with U-projection. Restriction
of equations in (CG) occurs via restriction of test functions.

3 Closeness of (Id− PUl)Sǔ to û for any ǔ relies on separation of
scales. Generally, PUl ǔ must be close enough to the coarse-scale
component of the actual solution and iteration is required.
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VMS vs VMG (linear case)

Comparison
The structure of VMS and VMG is very similar. Main differences:

1 In VMS the effect of the fine scale is approximated
explicitly/analytically. In VMG the smoother (=cheap numerical
process) constructs an approximation of the fine scale.

2 VMS focuses only on the coarse-scale component, ū. VMG is
concerned with the composition of the fine- and coarse-scale
components, ū + û.
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VMG for nonlinear problems

The splitting a(ū + û, v̄) = a(ū, v̄) + a(û, v̄) is inadmissible for semi-linear
functionals a(·; ·) : U × U → R.

VMS equations for NL problems
Consider the decomposition U = Ul ⊕ U⊥l and the nonlinear problem:

Find u ∈ U : a(u; v) = b(v) ∀v ∈ U (P)

Since a is linear in its second argument, (P) can be decomposed into

a(ū + û; v̄) = b(v̄) ∀v̄ ∈ Ul

a(ū + û; v̂) = b(v̂) ∀v̂ ∈ U⊥l
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VMG for nonlinear problems

NL-VMS coarse-scale equation
The test-space decomposition yields the coarse-scale equation
(assuming û is available):

Find ū ∈ Ul : a(ū + û; v̄) = b(v̄) ∀v̄ ∈ Ul (VMS∗)

The functional (ū, v̄) 7→ a(ū + û; v̄) is too complicated to treat directly.
So, instead, given an approximation ˇ̄u of the coarse-scale component,
we consider the defect-correction approximation:

a(ū; v̄) = a(ˇ̄u; v̄) + b(v̄)− a(ˇ̄u + v̂; v̄) ∀v̄ ∈ Ul (VMS)

with (ū, v̄) 7→ a(ū, v̄) an approximation to (ū, v̄) 7→ a(ū + û, v̄).
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VMG for nonlinear problems

NL-VMG
Given an initial approximation ǔ ∈ Ul+1 with a ‘not too bad’
approximation of the coarse scales (e.g. injection of Ul solution):

1 Perform a smoothing step ǔ 7→ Sǔ, where the smoother
S : Ul+1 → Ul+1 improves the approximation of the fine scales

2 Solve the coarse-grid problem corresponding to Sǔ:

Find ū ∈ Ul : a(ū; v̄) = a(PUlSǔ; v̄) + b(v̄)− a(Sǔ; v̄) ∀v̄ ∈ Ul

(FAS)
3 Update ǔ according to Sǔ + (ū− PUlSǔ)
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VMG for nonlinear problems

NL-VMG
Given an initial approximation ǔ ∈ Ul+1 with a ‘not too bad’
approximation of the coarse scales (e.g. injection of Ul solution):

1 Perform a smoothing step ǔ 7→ Sǔ, where the smoother
S : Ul+1 → Ul+1 improves the approximation of the fine scales

2 Solve the coarse-grid problem corresponding to Sǔ:

Find ū ∈ Ul : ã(ū; v̄) = ã(PUlSǔ; v̄) + b(v̄)− a(Sǔ; v̄) ∀v̄ ∈ Ul

(FAS)
3 Update ǔ according to Sǔ + (ū− PUlSǔ)

The functional (ū, v̄) 7→ a(ū, v̄) in (FAS) can be replaced by an
approximation (ū, v̄) 7→ ã(ū, v̄) (e.g. linearization)
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VMG for nonlinear problems

Remarks
1 Equation (FAS) is the variational form of the coarse-grid equation

in the Full-Approximation Scheme
2 Does (FAS) have a counter part in variational multiscale methods?
3 Iteration required (inexact fine scale and inexact functional in

coarse-grid equation!)
4 Because b(v)− a(u, v) = 0 for all v ∈ Ul+1 ⊃ Ul, if Sǔ = u then

ū = PUlu⇒ coarse-scale solution converges to U-projection of
solution in Ul+1.
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Conclusion
The structure of Variational Multi-Scale methods and Variational
Multi-Grid methods is very similar. The main differences are:

1 In VMS the effect of the fine scale is approximated
explicitly/analytically. In VMG an inexpensive computational
approximation (relaxation/smoother) is used to construct an
approximation of the fine scale.

2 VMS considers only the coarse-scale component. VMG considers
the full approximation (composition of the fine- and coarse-scale
components)

The methods have several dissimilarities⇒ there are many
opportunities for one methodology to borrow concepts/insights
from the other (iteration, coarse-grid equations, etc.)
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Solution methods for FSI: categorization

monolithic methods
Solve the fluid-structure (+pseudo-structure) system simultaneously

partitioned method (subiteration)
solve the fluid-structure system asynchronously by iteration:

1 solve fluid subject to structure displacement
2 solve structure subject to fluid load

solve structure

transfer displacement

solve !uid

transfer load
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Solution methods for FSI

Monolithic
advantages: stable
disadvantages: XL linear systems, inefficient, ill-conditioned
matrices, non-modular, dense matrices, no standard
preconditioners, . . .

Partitioned
advantages: standard linear systems corresponding to fluid and
structure, modular
disadvantages: potentially unstable, slow convergence
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MG for FSI: subiteration as smoother

Objective
Show for a model problem that subiteration is an excellent smoother
⇒ enormous potential for multigrid!
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Model problem

PARTITIONED ITERATIVE SOLUTION METHODS FOR FSI

2. PROBLEM STATEMENT

This paper is concerned with an analysis of iterative solution methods for FSI problems, based
on the subiteration method. We regard both compressible and incompressible fluid models, to
investigate the effect of (in-)compressibility. In addition, to examine the effect of the structural
operator on the behavior of the iterative methods, we consider two distinct structural models,
viz., a string and a beam. We restrict ourselves to linearized problems corresponding to small
perturbations of a uniform flow. The linearization procedure is analogous to that in [5] and will
not be repeated here.

The fluid occupies a semi-infinite open domain !=R×R+. The boundary of the domain,
!!=R×{0}, comprises a flexible structure in the interval "= (0,!) and is rigid in the remainder;
see the illustration in Figure 1. The two structural models that we consider can be condensed into
the generic form:

! z′′+"2 (−1)#D2#z= f, (1)

where (·)′ denotes the temporal derivative, D represent the (horizontal) spatial derivative, and #=1
for the string and #=2 for the beam. Furthermore, ! and " represent the mass density and the
rigidity of the structure, respectively, and f denotes the difference between the ambient pressure
and the pressure exerted by the fluid on the structure.

The string is fixed at its end points, i.e. z vanishes at the two-point boundary !"={0}∪{!}.
Moreover, the beam is hinged at its end point, i.e. both z and D2z vanish at !". Summarizing, it
holds that

z|!" =0 (#=1,2), (2a)

D2z|!" =0 (#=2). (2b)

The reason that we select a hinged beam instead of the more common clamped beam is that the
hinged beam possesses the same eigenmodes as the string. This enables us to perform large parts
of the ensuing analysis for both structural models simultaneously.

The fluid and the structure are connected by dynamic and kinematic interface conditions.
The dynamic condition stipulates continuity of tractions across the fluid–solid interface, while the
kinematic condition stipulates impermeability of the interface. Assuming a slip condition at
the fluid–solid interface, the linearization of the kinematic condition leads to the transpiration
condition:

v|" = z′+U Dz, (3)

with v the vertical velocity of the fluid and U a prescribed free-stream velocity. The transpiration
condition (3) furnishes a boundary condition for the fluid subproblem. The fluid subproblem
associates a pressure field p to each admissible boundary-velocity v|". The trace of this pressure

Figure 1. Illustration of the fluid–structure interaction model problem.

Copyright ! 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids (2010)
DOI: 10.1002/fld
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Model problem

simplifications
(geometric) linearization
incompressible flow with slip boundary condition on bottom
boundary

procedure
formal asymptotic expansion
expand structural displacement in eigen functions (sinusoides)
derive Fourier symbol of relation between displacement and
pressure at the boundary of the fluid domain (Poincaré-Steklov
operator)
derive error-amplification for each eigenmode
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Spectral decomposition

Structure model

µz′′ + λ2D4z = −p on (0, `) =: Ω

z = D2z = 0 at {0, `}
z′(0) = z(0) = 0

Subiteration model

µz′′n + λ2D4zn = −p(zn−1) on (0, `) (S)

zn = D2zn = 0 at {0, `} (BC)
z′n(0) = zn(0) = 0 (IC)
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Spectral decomposition

Structural eigenmodes
The eigenvalues and eigenmodes of the structure are

σk = λ2(kπ/`)4 ψk(x) =
√

2/` sin(kπx/`) (k ∈ N)

Proposition
The eigenmodes are orthonormal in L2(Ω) and form a countable
orthogonal basis of the displacement space H2(Ω) ∩ H1

0(Ω)

Corollary
There exist functions z̄n,k : (0,T)→ R such that zn(x, t) =

∑
k z̄(t)ψk(x)
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Reduction

ODE for coefficients
L2 projection of (S) onto ψk yields:

µz̄′′n,k(t) + σkz̄n,k(t) = −
(
ψk, p

(∑
lz̄n−1,lψl

)
(·, t)

)
L2(Ω)

(ODE)

Green’s function
By means of the Green’s function for µ(·)′′ + σ(·) we obtain:

z̄n,k(t) = −
∫ t

0
g(t, s)

(
ψk, p

(∑
lz̄n−1,lψl

)
(·, s)

)
L2(Ω)

ds

where
g(t, s) = −(µσ)−1/2 sin

(
(σ/µ)1/2(s− t)

)
(G)
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Reduction

A tedious derivation . . .

Solution of the linearized incompressible flow equations gives(
ψk, p

(∑
lz̄n−1,lψl

)
(·, t)

)
L2(Ω)

= ρ
(

(kπ/`)−1z̄′′n−1,k(t) + 2ν(kπ/`)z̄′n−1,k(t)− U2(kπ/`)z̄n−1,k(t)
)

ρ: fluid density
ν: fluid viscosity
U: mean flow velocity
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Amplification / smoothing

Error amplification
The subiteration process is characterized by the map z̄n−1,k 7→ z̄n,k:

z̄n,k(t) = − ρ`

µπk
z̄n−1,k(t)−

∫ t

0
βk(t, s) z̄n−1,k(s) ds

= − ρ`

µπk
z̄n−1,k(t) + O(tz̄n−1,k) as t→ 0

Conclusion
1/k proportionality in the short-time-interval limit t→ 0⇒ subiteration
is a very effective smoother
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Amplification / smoothing
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Philosophies

Multigrid purism
For any problem, there exists a suitable relaxation scheme and coarse
grid correction that allows you to solve that problem in only a few
operations per grid point. If your scheme does not do that, then work
harder!

Multigrid pragmatism
For difficult problems, the multigrid method eliminates most error
components, but not all. The few remaining ones (possibly unstable!),
can be effectively handled by a Krylov-subspace method⇒ multigrid
as preconditioner (or Krylov acceleration of multigrid)
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Krylov-subspace methods

Krylov subspace
Consider the linear problem Au = b (A ∈ RN×N , b ∈ RN) and an
approximation ǔ. Define r = b− Aǔ. The Krylov subspace, Km, is built
by recursion

Km = span{r,Ar,A2r, . . . ,Am−1r}

Interpretation
Let e = ǔ− ū denote the error. Then Ae = r and

Km = span{Ae,A2e,A3e, . . . ,Ame}

⇒ Krylov space essentially contains error components corresponding
to largest eigenvalues (=good approximation space!)
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Krylov-subspace methods

Example: GMRES
In the GMRES method∗, we construct a new approximation ũ ∈ ǔ +Km

such that
ũ = arg inf

u∈ǔ+Km

‖Au− b‖ (LSQ)

Remarks
(LSQ) corresponds to least-squares problem of dim m.
many implementational details

∗Y. Saad and M.H. Schultz, GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems, SIAM J. Sci. Stat. Comput. 7 (1986), 856–869.
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Convergence of GMRES

‖rm‖ :=‖Aũ− b‖ (Def)
= inf

u∈ǔ+Km
‖Au− b‖ (from (LSQ))

= inf
y∈Km

‖r0 + Ay‖ (b− Aǔ = r0)

= inf
a1,...,am

‖r0 + a1Ar0 + · · ·+ amAmr0‖ (Def Km)

= inf
ψ∈Pm

1

‖ψ(A)r0‖

≤ inf
ψ∈Pm

1

‖ψ(A)‖‖r0‖ (Def)

where Pm
1 denotes the the space of polynomials of degree m that

evaluate to 1 at zero.
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Convergence of GMRES (cont’d)

Spectral mapping Thm.
Consider a bounded linear operator A : X → X with spectrum
σ(A) ⊂ C. For any analytic function f it holds that

σ(f (A)) = f (σ(A))

(the spectrum of an analytic function of an operator is the function
applied to the spectrum of the operator)
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Convergence of GMRES (cont’d)

Spectral decomposition
Any (non-degenerate) matrix A ∈ RN×N can be decomposed as:

A = VΣV−1

with Σ = diag(σ1(A), . . . , σN(A)) and V the matrix of eigenvectors
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Convergence of GMRES (cont’d)

‖rm‖
‖r0‖

≤ inf
ψ∈Pm

1

‖ψ(A)‖

= inf
ψ∈Pm

1

‖Vψ(Σ)V−1‖ (Sp. Map. Thm.)

≤‖V‖‖V−1‖ inf
ψ∈Pm

1

‖ψ(Σ)‖

=κ(V) inf
ψ∈Pm

1

‖ψ(Σ)‖

≤κ(V) inf
ψ∈Pm

1

sup
z∈σ(A)

|ψ(z)|

where κ(V) denotes the condition number of V.

Harald van Brummelen (TU/e) MG miscellaneous SINTEF winter school 2011 24 / 33



Convergence of GMRES (cont’d)

Corollary
The residual reduction in the GMRES method is bounded by:

‖rm‖
‖r0‖

≤ κ inf
ψ∈Pm

1

sup
z∈σ(A)

|ψ(z)|

⇒ Very good convergence if A has only ‘a few’ large eigen values
⇒ Very good convergence if eigenvalues are clustered
⇒ Bad if eigenvalues are dispersed in C.
⇒ Monotone convergence
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Convergence of GMRES (cont’d)

Illustration

Im

Re

spectrum

root of GMRES 
polynomial
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Multigrid as preconditioner
One iteration of a multigrid method, ǔi 7→ ǔi+1 can be regarded as an
application of an approximate inverse, Ã−1. From the sequence of
approximations, we can construct a Krylov space:

Km(AÃ−1, r0) = span{r0,AÃ−1r0, . . . , (AÃ−1)m−1r0}

Convergence of Multigrid-preconditioned GMRES

‖rm‖ = inf
ψ∈Pm

1

∥∥ψ(AÃ−1)r0
∥∥

⇒ How are eigenvalues of AÃ−1 distributed?

Residual-convergence of Multigrid separately
For MG separately:

‖rm‖ = ‖(I − AÃ−1)mr0‖
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Multigrid as preconditioner

Residual-convergence of Multigrid separately (proof)
The multigrid method can be written in defect-correction form as:

Ãun = Ãun−1 + (b− Aun−1)

Defining error as en = un − ū, it holds that:

en = (I − Ã−1A)en−1 = (I − Ã−1A)ne0

The residual and error are related by rn = Aen:

rm = Aem = A(I − Ã−1A)mA−1r0 = A(I − Ã−1A)m−1(I − Ã−1A)A−1r0

= A(I − Ã−1A)m−1A−1(I − AÃ−1)r0 = · · · = (I − AÃ−1)mr0
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Multigrid as preconditioner

Illustration

Im

Re1

MG stability bound
spectrum AA-1~

MG slow convergence

MG unstable
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Conclusion

Message
An imperfect multigrid method can be a perfect preconditioner
for Krylov methods!
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Further reading
T. Washio and C.W. Oosterlee, Krylov subspace acceleration for nonlinear multigrid
schemes, Electronic Transactions on Numerical Analysis 6 (1997), 271–290.

C.W. Oosterlee and T. Washio, An evaluation of parallel multigrid as a solver and a
preconditioner for singularly perturbed problems, SIAM J. on Sci. Comput. 19 (1998),
87–110.

H.C. Elman, O.G. Ernst, and D.P. O’Leary, A multigrid method enhanced by Krylov
subspace iteration for discrete Helmholtz equations, SIAM J. Sci. Comput. 23 (2002),
1291–1315.
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Integral transforms and multi-summations

Integral transforms and multi-summations

u(x) =

∫
Ω

K(|x− y|) v(y) dµ(y)

ui =

N∑
j=1

Kijvj for i ∈ {1, . . . ,N}

Applications
gravitational forces, coulomb forces, . . .
solid mechanics: interaction of dislocations, Herz’ law of elastic
deformation
molecular dynamics: vd Waals forces (gen. potentials)
. . .
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Integral transforms and multi-summations

Asymptotic smoothness
In many applications, the kernel K is asymptotically smooth (or
singularly smooth):

DnK(r)→ 0 as |r| → ∞

Remarks:
often monotonous decay
generally DnK(r)/DmK(r)→ 0 as |r| → ∞ for n > m

generally K(r) is singular as r → 0.
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Integral transforms and multi-summations

Examples
Newton gravitation:

Kij = −Gm2 xi − xj

|xi − xj|3
(1/r2)

Coulomb forces:
Kij = keq2 xi − xj

|xi − xj|3
(1/r2)
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Integral transforms and multi-summations

Complexity
For each index i ∈ {1, . . . ,N}, all other indices j ∈ {1, . . . ,N} have to
be visited⇒ direct evaluation of a multi-summation amounts to O(N2)
operations.
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Integral transforms and multi-summations

Complexity
For each index i ∈ {1, . . . ,N}, all other indices j ∈ {1, . . . ,N} have to
be visited⇒ direct evaluation of a multi-summation amounts to O(N2)
operations.

Multi-level Multi-summation
The main concept of multi-level multi-summation is to reduce the
computational cost by exploiting the smoothness properties of the
kernel: smooth functions can be accurately approximated by
interpolation from a coarse grid.

Harald van Brummelen (TU/e) MG miscellaneous SINTEF winter school 2011 30 / 33



Multi-level multi-summation
Consider

an interval Ω := (0, `)

a uniform partition {0, h, . . . ,Nh(:= `)}
a coarse partition {0,H, . . . , (N/2)H} with H = 2h

a fine-grid multi-summation vh
(·) 7→ uh

(·)

uh
i =

∑
j

Khh
ij vh

j
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Multi-level multi-summation
Assume that Khh

ij is ‘sufficiently smooth’ (for the moment, globally!), so
that at an ‘acceptable error’ for each fixed i we can replace Khh

ij by an
interpolation of its values on the H-grid:

Khh
ij ≈

∑
J∈Γj

wjJKhH
iJ

Γj: a neighborhood of j of H-grid points; wjJ: interpolation weights.

h

H

j

J

j
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Multi-level multi-summation
Conversely, by reversing the order of summation:

ǔh
i =

∑
j

∑
J∈Γj

wjJKhH
iJ vh

j

=
∑

J

∑
j∈Γ∗J

wjJKhH
iJ vh

j

where Γ∗J is a dual neighborhood of h-grid point of point J.

h

H

j

J

J

*
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Multi-level multi-summation
Conversely, by reversing the order of summation:

ǔh
i =

∑
j

∑
J∈Γj

wjJKhH
iJ vh

j

=
∑

J

∑
j∈Γ∗J

wjJKhH
iJ vh

j

=
∑

J

KhH
iJ

∑
j∈Γ∗J

wjJvh
j

=
∑

J

KhH
iJ vH

J (coarse-grid summation)
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Multi-level multi-summation
By the smoothness of KhH

iJ with respect to the i index, we can replace
KhH

iJ by its values KHH
IJ on the H-grid:

KhH
iJ ≈

∑
I∈Γi

wiIKHH
IJ (∗)

⇒

ǔh
i =

∑
J

KhH
iJ vH

J

=
∑

J

∑
I∈Γi

wiIKHH
IJ vH

J (by ∗)

=
∑
I∈Γi

wiI

∑
J

KHH
IJ vH

J

=
∑
I∈Γi

wiIuH
I
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Multi-level multi-summation
Algorithm: At the expense of an interpolation error, we can replace the
fine-grid multi-summation by

1 restriction of vh
j to the coarse-grid:

vH
J =

∑
j∈Γ∗J

wjJvh
j

2 coarse-grid multi-summation:

uH
I =

∑
J

KHH
IJ vH

J

3 interpolation:
uh

i =
∑
I∈Γi

wiIuH
I
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Multi-level multi-summation: singularly smooth kernels
For singularly-smooth kernels, the basic algorithm will not work on
account of the excessive interpolation error near the singularity.
Instead, we perform a local correction. Note that

uh
i = ǔh

i + (uh
i − ǔh

i )

= ǔh
i +

∑
j

(
Khh

ij −
∑
I∈Γi

∑
J∈Γj

wiIwjJKHH
IJ

)
vh

j
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Multi-level multi-summation: singularly smooth kernels

j

i
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Multi-level multi-summation: singularly smooth kernels
For singularly-smooth kernels, the basic algorithm will not work on
account of the excessive interpolation error near the singularity.
Instead, we perform a local correction. Note that

uh
i = ǔh

i + (uh
i − ǔh

i )

= ǔh
i +

∑
j

(
Khh

ij −
∑
I∈Γi

∑
J∈Γj

wiIwjJKHH
IJ

)
vh

j

= ǔh
i +

∑
j∈Γε

i

(
Khh

ij −
∑
I∈Γi

∑
J∈Γj

wiIwjJKHH
IJ

)
vh

j

where Γεi is a neighborhood of i, depending on the admissible error ε.
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Multi-level multi-summation: singularly smooth kernels
Algorithm: At the expense of a controlable interpolation error, we can
replace the fine-grid multi-summation by

1 restriction of vh
j to the coarse-grid:

vH
J =

∑
j∈Γ∗J

wjJvh
j

2 coarse-grid multi-summation:

uH
I =

∑
J

KHH
IJ vH

J

3 interpolation:
ũh

i =
∑
I∈Γi

wiIuH
I

4 local correction:

uh
i = ũh

i +
∑
j∈Γε

i

(
Khh

ij −
∑
I∈Γi

∑
J∈Γj

wiIwjJKHH
IJ

)
vh

j
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Multi-level multi-summation: singularly smooth kernels

Remarks
1 recursion: the coarse-grid multi-summation can again be

evaluated by the same algorithm
2 the actual multi-summation can be performed in O(N) operations

on a grid with O(
√

N) points; in practice, one uses a grid with O(1)
points

3 on all but the coarsest grid, only local operations are performed
(restriction, interpolation, correction)⇒ for fixed ε, multi-level
multi-summation requires O(N) operations

Harald van Brummelen (TU/e) MG miscellaneous SINTEF winter school 2011 32 / 33



Further reading
A. Brandt, Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Tech.
Report GMD 85, 1984.

C.H. Venner and A.A. Lubrecht, Multilevel methods in lubrication, Tribology Series, vol. 73,
Elsevier, Amsterdam, 2000.

A. Brandt and C.H. Venner, Fast evaluation of integral transforms on adaptive grids,
Multigrid Methods V (Proc. Stuttgart, 1996) (Berlin) (W. Hackbusch and G. Wittum, eds.),
Lecture Notes in Computational Science and Engineering, vol. 3, Springer Verlag, 1998,
also appeared as Internal Report Carl F. Gauss Minerva center for scientific computation,
WI/CG-5, pp. 20–44.

A. Brandt and A. A. Lubrecht, Multilevel matrix multiplication and the fast solution of
integral equations, J. Comput. Phys. 90 (1990), 348–370.

A. Brandt and C.H. Venner, Multilevel evaluation of integral transforms with asymptotically
smooth kernels, SIAM J. Sci. Stat. Comput. 19 (1998), 468–492
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