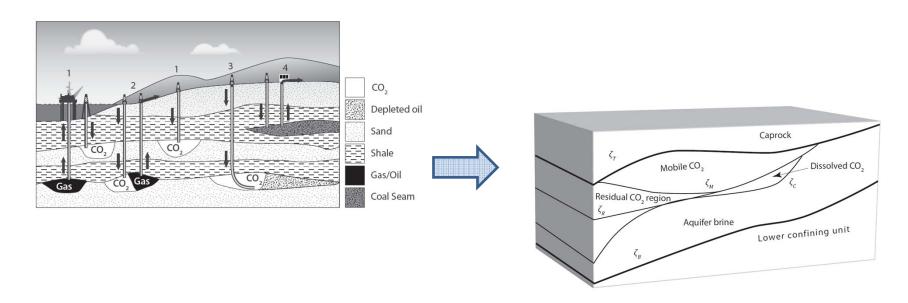
Multiscale modeling: A modern look at old equations



Topics

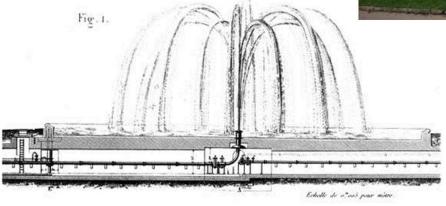
- Foundation 1: Multi-phase flow in porous media
- Foundation 2: Multiscale modeling
- Application: Understanding a generation of engineering models as a family of consistent multiscale models.
- Bonus: Novel, synergetic, models.

Henry Darcy

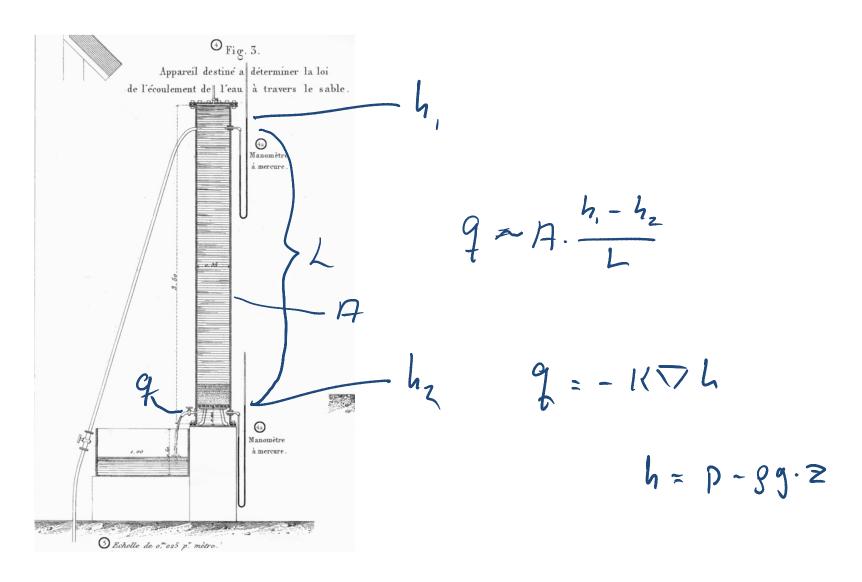
The Public Fountains of the City of Dijon

Henry Darcy, 1856

English Translation by Patricia Bobeck



Filtration of water



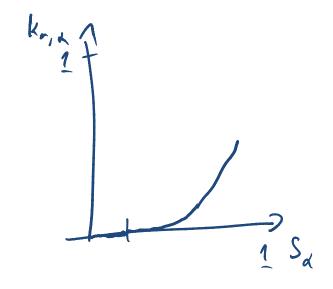
Flow through porous rocks

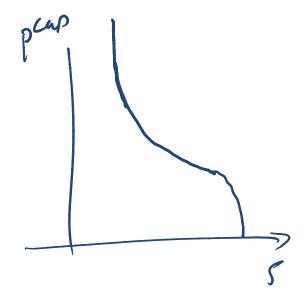
- Proportional to (potential) energy gradient
- Inversely proportional to viscosity
- Rock dependent
- Dependent on fluid occupancy
- No momentum conservation!
- Interaction with other physical phenomena:
 - Transport, (geo)mechanics, (geo)chemistry, freefluid flow, thermodynamics, radioactivity...

Summary of «simple» flow equations

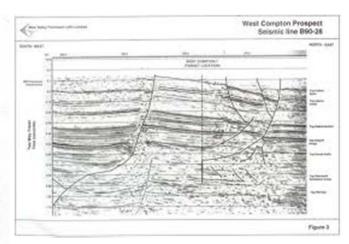
$$q = -\frac{k \, K_{1} \, (s)}{M_{1}} \, (P_{1} - ggz)$$
 $Z = 1$
 $Z \cdot q = 0$

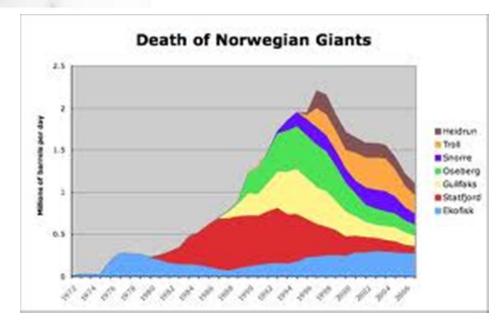
$$\rho^{cup} = \rho_a - \rho_w = \rho^{cu}(s)$$





Multiscale porous media





Multiscale properties

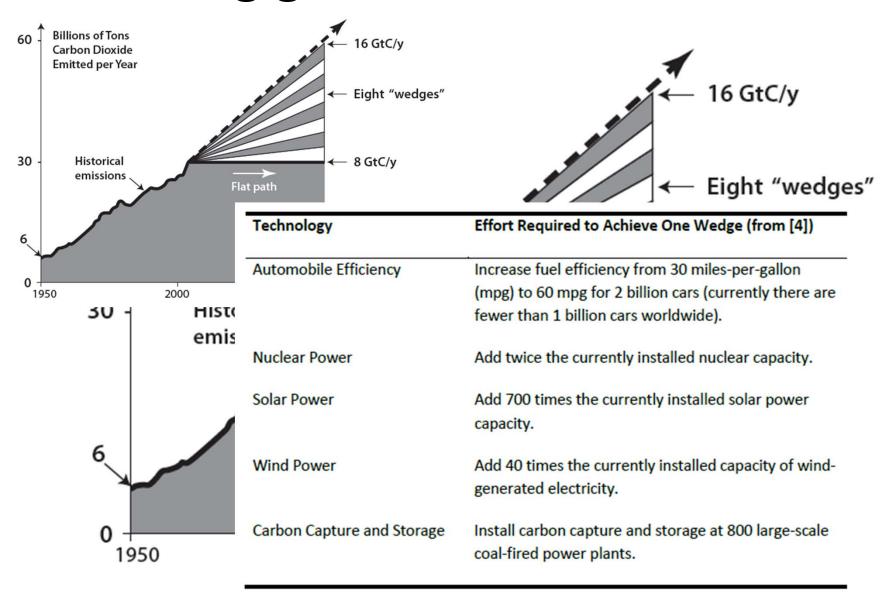
Parameters:

- Heterogeneous at all length scales (no separation!)
- Only «known» at coarse resolution
- Highly uncertain in practice

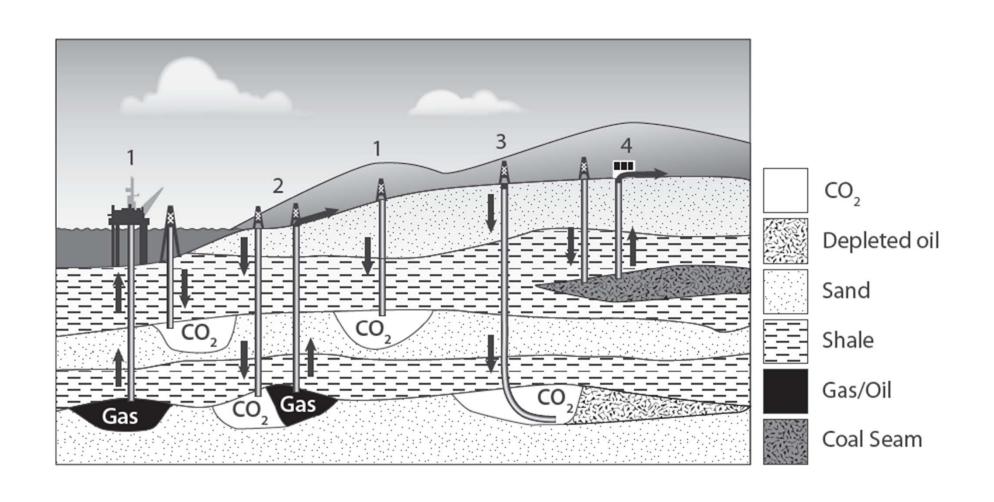
• Solution:

- Singularities near wells
- Singularities near parameter discontinuities
- Unstable displacement may give fractal displacement

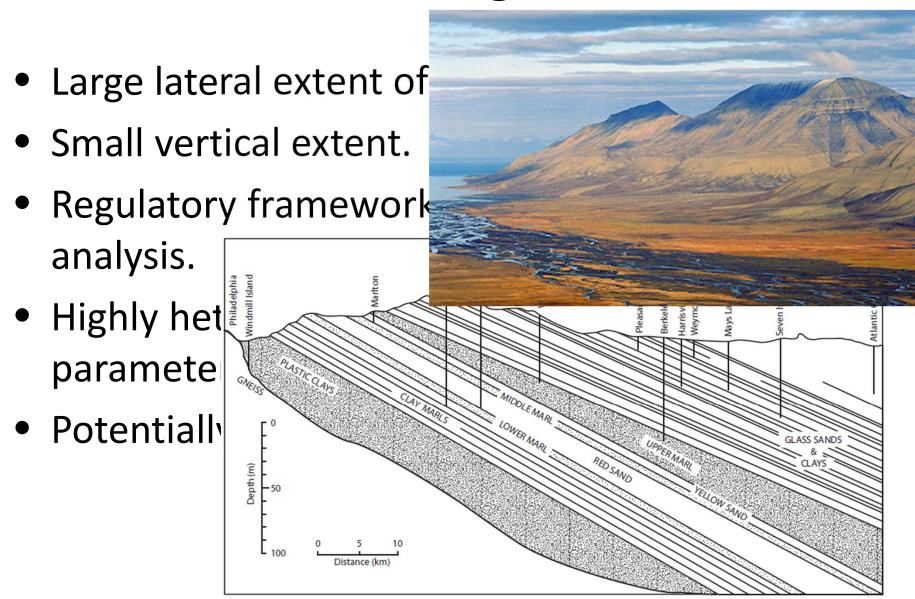
Fixing global CO2 emissions



Geological Storage Options



Challenges



Large scale models for CO₂ storage

- Dependent on length and time scales.
- Dependent on physical processes.
- Need to include aquifer topology and heterogeneity.
- Should have transparent derivation and interpretation.

CO₂ storage: Spatial scales Features Aquifer horizont. extent Migration distance Pressure perturbation Micro Meso Final plume radius Nano Dist. to leakage path Formation vertical extent Capillary fringe Wellbore flow Macro Fracture width Fluid interfaces 1 km 10 cm 10 m 100 km mm

Aquifer models for CO₂ storage

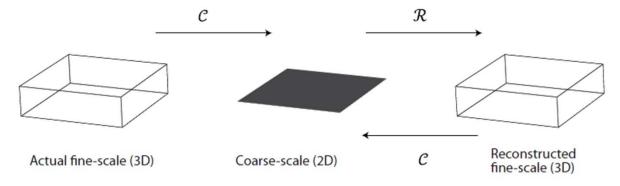
- Upscale equations vertically: 3D -> 2D
- Key requirements:
 - 1. Assumptions on distribution of fine-scale variables
 - 2. Component masses, pressure, saturations, ...
- Traditional models:

Sharp interface model for saltwater intrusion; Sharp interface model in oil and gas recovery; Models for unconfined aquifers

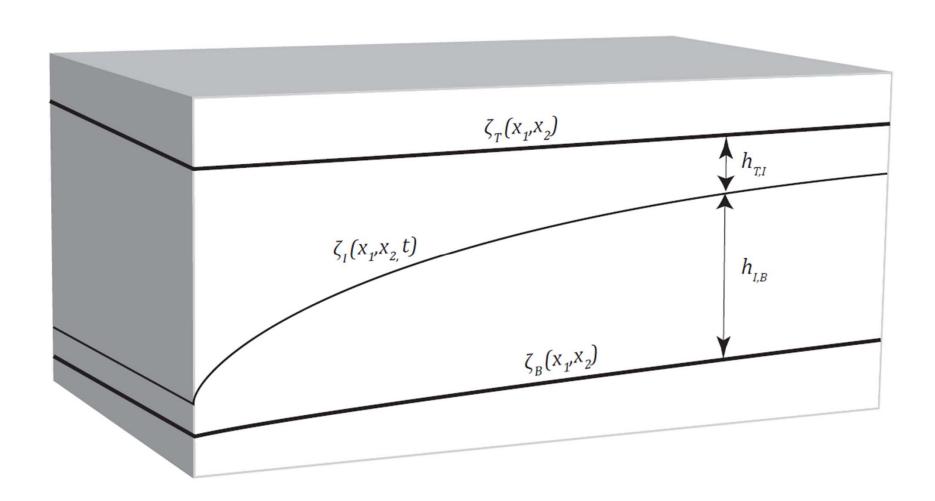
Horizontal upscaling?

Multiscale framework

- Coarsening operator (denoted \mathcal{C}) represents e.g. integration, subsampling, or other.
- Reconstruction operator (denoted \mathcal{R}) is required for upscaling of constitutive relationships.
- Consistency is enforced by $U = \mathcal{C}\mathcal{R}\ U$



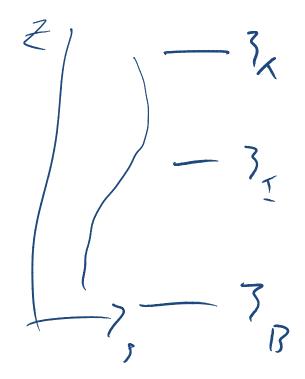
Upscaling two-phase flow



7 Coarsening operators

$$P = Cp = p(3p) = 7$$

$$3z = Cs$$

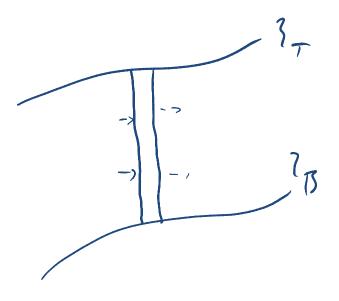


Coarse model

Mass/Volume conservation

$$\nabla_{\parallel} \cdot U_{\tau} = 0$$

Coarse flux law



Reconstructing pressure

$$P = (p = P(3p)) \qquad P = P(x_{11}, x_{2}, +)$$

$$P = P(x_{11}, x_{2}, +)$$

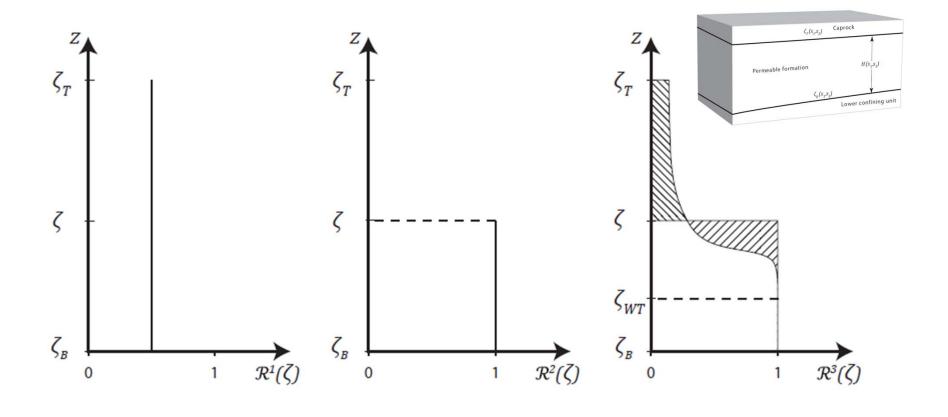
$$P = P(3p) - 892$$

$$P = P(3p) - 89(x_{3} - 3p) = RP$$

$$P = P(3p) - 89(x_{3} - 3p) = RP$$

$$P = P(3p) - 89(x_{3} - 3p) = RP$$

Reconstructing saturation



 Same average saturation can be modeled as different vertical distributions!

Incompressible two-phase flow

• Mass (volume) Conservation: $\Phi \frac{\partial S_{\alpha}}{\partial t} + \nabla_{||} \cdot U_{\alpha} = \Upsilon_{\alpha}$

• Darcy's Law $U_{\alpha} = \int_{\zeta_{a}}^{\zeta_{T}} e_{||} \cdot u_{\alpha} dx_{3} = -\int_{\zeta_{a}}^{\zeta_{T}} k_{||} \lambda_{\alpha} (\mathcal{R}_{s_{\alpha}}^{II} S_{\alpha}, \widehat{s_{c}}^{t}) (\nabla_{||} \mathcal{R}_{p_{\alpha}}^{D} P_{\alpha} + \rho_{\alpha} e_{||} \cdot \mathbf{g}) dx_{3}$

Coarse scale forms:

$$\Phi \frac{\partial S_{\alpha}}{\partial t} - \nabla_{||} \cdot (K \Lambda_{\alpha} (S_{\alpha}, \widehat{s_{c}}^{t}) (\nabla_{||} P_{\alpha} - \varrho_{\alpha} G)) = \Upsilon_{\alpha}$$

$$K = \int_{\zeta_{B}}^{\zeta_{T}} \mathbf{k}_{||} dx_{3}, \quad \Lambda_{\alpha} (S_{\alpha}, \widehat{s_{c}}^{t}) = K^{-1} \int_{\zeta_{B}}^{\zeta_{T}} \mathbf{k}_{||} \lambda_{\alpha} (\mathcal{R}_{s_{\alpha}}^{II} S_{\alpha}, \widehat{s_{c}}^{t}) dx_{3},$$

$$G = e_{||} \cdot g + (g \cdot e_{3}) \nabla_{||} \zeta_{P}$$

Dependence on sat. reconstruction

Uniform saturation:

- «No upscaling»: Same as coarse numerical grid
- Accurate for disperse systems

• Sharp transition:

- «Sharp interface model»: Traditional, old-fashioned
- Accurate for gravity dominated problems

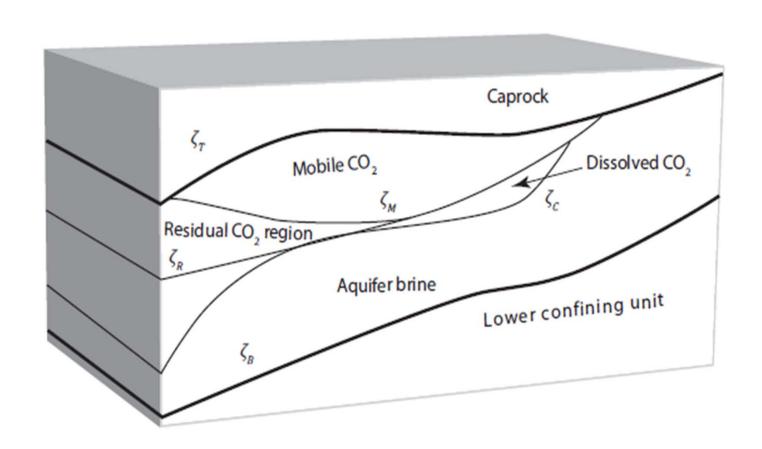
Capillary zone:

- Unconventional model (although from 1970's).
- Accurate when capillarity and gravity balance.

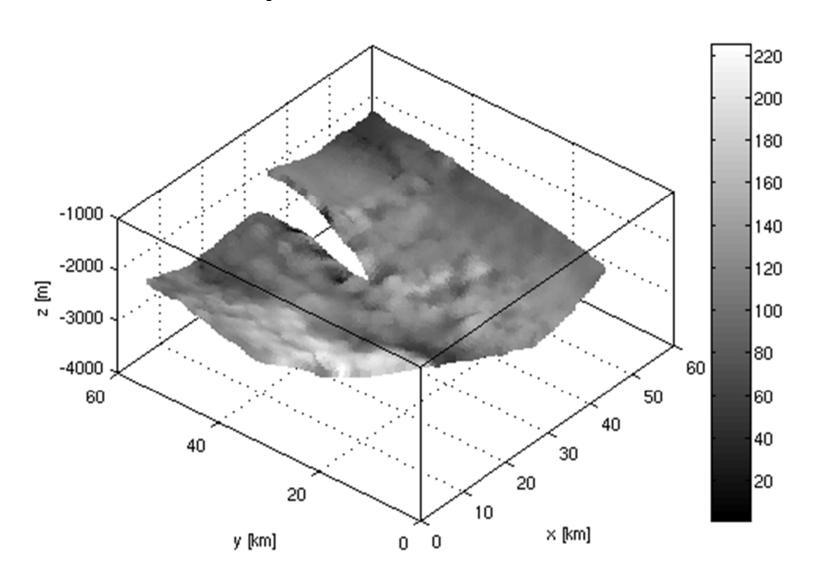
What does this mean?

- A mathematically consistent family of coarse models.
- Complete transparancy with respect to modeling assumptions.
- Model family includes three classical models from literature.
- Framework easily extends to account for more complex phenomena.

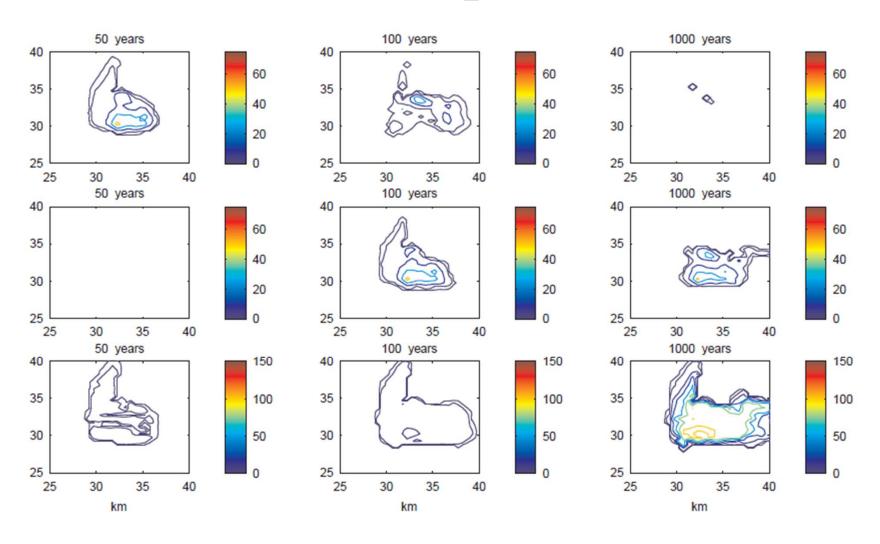
Examples – CO2 storage



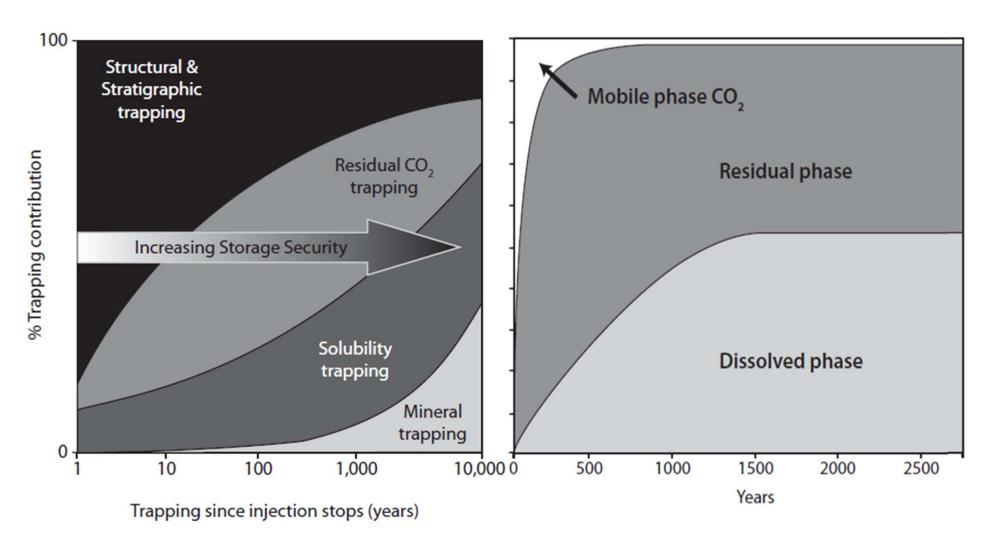
Case study: Johansen formation



Extent of CO₂ migration



Storage security



Thoughs for skiing

- 1. Think of a familiar application. Can you understand it in a new way by thinking in terms of multiscale modeling?
- 2. What is the difference between upscaling and multiscale modeling?
- 3. When can multiscale be used as a preconditioner?
- 4. What kind of non-linear problems are possible/impossible to consider with multiscale approaches?