
Isogeometric Analysis of
Finite Deformation Solids

Kjell Magne Mathisen†, Knut Morten Okstad‡ and Trond
Kvamsdal‡

†NTNU, Department of Structural Engineering, Trondheim, Norway
‡SINTEF ICT, Department of Applied Mathematics, Trondheim, Norway

January 26, 2012



Outline

I Motivation

I NURBS vs. Lagrange FEM

I Nonlinear elasticity

I Mixed formulation

I Implementational issues

I Numerical examples

I Concluding remarks



Motivation

I ”Locking” − a challenge in linear as well as nonlinear problems

I Volumetric locking − a challenge where nearly incompressible
behavior is prevalent

I NFEA has been dominated by use of low-order elements
designed to avoid volumetric or incompressible locking

I Recently the isogeometric approach has formed the basis for
overcoming the incompressibility problem

I Hughes and co-workers has addressed this by the B̄ and
F̄−projection methods

I Taylor improved the performance of mixed elements by using
NURBS

I We have implemented two classes of mixed elements into
IFEM, an object-oriented toolbox for performing isogeometric
NFEA with splines and NURBS as basis functions



B-splines vs Lagrange shape functions in 1D

Note: Number of control points less than number of nodal points
⇒ B-Splines obtain higher accuracy vs dofs invested for Lagrange

C 0− continuity ⇒ discontinuous stress/strain fields between elements

Cp−1− continuity ⇒ continuous stress/strain fields for p ≥ 2

NURBS can exactly represent conical sections



Comparison of FEA and IGA:

Finite Element Analysis:

I Nodal points

I Nodal variables

I Mesh

I Lagrange basis functions

I Basis interpolate nodal
points and variables

I h−refinement

I p−refinement

I Approximate geometry

I Subdomains

Isogeometric Analysis:

I Control points

I Control variables

I Knots

I NURBS basis functions

I Basis does not interpolate
control points and variables

I Knot insertion

I Order elevation

I Exact geometry

I Patches

I Partition of unity

I Isoparametric concept

I Patch test satisfied



Textbook on Isogeometric Analysis

The authors, which are the
originators of IGA, provide us
with a systematic and compre-
hensive coverage on how to add
isogeometric capabilities to FE
programs



Constitutive equations for
finite hyperelasticity



Hyperelasticity

I We assume hyperelastic homogeneous isotropic material
behavior for which there exist a free-energy function1 Ψ that
depends on the left Cauchy-Green deformation tensor2 b

Ψ = Ψ(b) with b = FFT and F = I +
∂u

∂X

F is the deformation gradient, u is the displacement and I is
the 2nd order unit tensor

I Cauchy stresses σ may be derived from the invariants of b

σ =
2

J

∂Ψ

∂b
=

2

J

(
ΨIb + 2ΨIIb

2 + J2ΨIII I
)

ΨI , ΨII and ΨIII are the derivatives of Ψ with respect to the
invariants of b and J = detF; the determinant of the
deformation gradient

1Also called stored energy or strain energy function
2Also referred to as the finger tensor



Compressible neo-Hookean material model

I For hyperelastic materials exhibiting a completely different
volumetric and isochoric response, the free-energy function
may be additively decomposed into a volume-changing
(dilatational part), and a volume-preserving (isochoric part)

Ψ(J,b) = Ψdil(J) + Ψiso(J,b)

I The dilatational part is expressed in terms of J

Ψdil(J) = λU(J) =
1

2
λ (ln J)2

I The isochoric part is expressed in terms of J and b

Ψiso(J,b) =
1

2
µ (trb− 3)− µ ln J

I λ and µ are the Lame’s constants that may be derived from
Young’s modulus, E , and Poisson’s ratio, ν



Compressible neo-Hookean material model

I Cauchy stresses are obtained from the first derivatives of Ψdil

and Ψiso w.r.t. J and the first invariant of b; I = trb = bkk

σij =σdilij + σisoij =

(
λ
∂U

∂J
+
∂Ψiso

∂J

)
δij +

2

J
bij
∂Ψiso

∂I

=
1

J
[µbij + (λ ln J − µ) δij ]

I Spatial tangent moduli are similarly obtained from the second
derivatives

cijkl = cdil
ijkl + c iso

ijkl =
1

J
[λδijδkl + 2 (µ− λ ln J) Iijkl ]

where Iijkl = 1
2 [δikδjl + δilδjk ]



Modified neo-Hookean material model

I Rubber-like materials are characterized by relatively low
shear modulus and high bulk modulus ⇒ they are nearly
incompressible while highly deformable when sheared

I Multiplicative split of the deformation gradient into a
volume-changing (dilatational) and volume-preserving
(isochoric) part

F = FdilFiso

{
Fdil = J1/3I ⇒ detFdil = detF = J

Fiso = J−1/3F ⇒ detFiso = 1

I A modified deformation gradient F̄ is obtained by replacing J
with the scalar parameter J in the dilatational part

F̄ = F̄dilFiso =

(
J

J

)1/3

F where F̄dil = J
1/3

I⇒ det F̄ = J



Modified neo-Hookean material model

I Using the multiplicative split the isochoric part of the finger
tensor becomes

b̄ = biso = Fiso(Fiso)T = J−2/3b

I The isochoric part of the free-energy function may know be
written in terms of the modified invariant I = trb̄ = J−2/3trb

Ψ(J, I ) = Ψdil(J) + Ψiso(I )

where

Ψdil(J) = κU(J) = 1
4κ
(
J2 − 1− 2 ln J

)
Ψiso(I ) = 1

2µ
(
I − 3

)
I κ and µ are equivalent to the small strain bulk and shear

modulus, respectively



Modified neo-Hookean material model
I The volumetric part of the Cauchy stresses for the above

volumetric behavior gives rise to the hydrostatic pressure

σdilij = κ
∂U

∂J
δij =

κ

2J
(J2 − 1)δij

I The deviatoric part now may be expressed in terms of the
modified deformation tensor b̄ij

σisoij =
µ

J
b̄d
ij where b̄d

ij = b̄ij −
1

3
δij b̄kk

I Current spatial tangent moduli for the modified neo-Hookean
material model

cijkl = cdil
ijkl + c iso

ijkl

where

cdil
ijkl = κ

J

[
J2δijδkl + (1− J2)Iijkl

]
c iso
ijkl = 2µ

3J

[
b̄mm(Iijkl − 1

3δijδkl)− δij b̄
d
kl − b̄d

ijδkl

]



Variational and discrete formulation
of the finite deformation problem



Mixed formulation

I A three-field mixed approximation has led to successful
lower-order solid elements that can be used in finite
deformation problems that exhibit compressible and/or nearly
incompressible behavior for a large class of materials

Π(u, p, θ) =

∫
Ω

Ψ(J, b̄)dΩ +

∫
Ω

p(J − J)dΩ− Πext

I p is a Lagrange multiplier that constrains J to its independent
representation, denoted J. p may be identified as the Cauchy
mean or hydrostatic stress

σdilij = pδij

I For computations we let J be related to θ through

J = 1 + θ ⇒ θ = 0 in C0



Linearized discrete form of the variational equations

I If we approximate the volume change θ and the pressure p by
interpolation functions in reference coordinates X

θ =
∑nθ

b=1 Lb(X)θ̃b = Lθ̃ and p =
∑np

b=1 Mb(X)p̃b = Mp̃

the linearized discrete form of the variational equation reads Kuu Kuθ Kup

Kθu Kθθ Kθp

Kpu Kpθ 0


d ũ

d θ̃
d p̃

 =


Ru

Rθ
Rp


I Residuals are expressed as sums over elements as

Ru = f −
∑

e

∫
Ωe

BT σ̂JdΩ

Rθ =
∑

e

∫
Ωe

LT (p̄ − p)dΩ

Rp =
∑

e

∫
Ωe

MT (J − J)dΩ

where

σ̂ = σ̄ + m(p̂ − p̄)
p̄ = 1

3m
T σ̄

p̂ = (J/J)p
mT = [1, 1, 1, 0, 0, 0]



Discontinuous θ − p approximations

I Approximations for θ and p are identical (L = M) and
assumed to be discontinuous between contiguous elements

⇒ θ̃ and p̃ are condensed out on the element level

I Direct solution ⇒ Re
θ and Re

p vanish and the linearized form
is reduced to

K̄uud ũ = Ru

where

K̄uu = Kuu +KupK
−1
θp KθθK

−1
pθ Kpu−KuθK

−1
θp Kpu−KupK

−1
θp Kθu

I An efficient procedure to compute the reduced tangent may
be found in3

3Zienkiewics, O.C. and Taylor, R.L. The Finite Element Method for Solid
and Structural Mechanics (6th ed, Elsevier, 2005)



Qp/Pp−1 and Qp/Qp−1 mixed formulations

I Implemented and studied two different constraint
approximations based on the three-field variational form:

Qp/Pp−1: u continuous of order p with Cp−1 continuity on
”patches”, θ and p discontinuous of order p − 1

Note: θ and p are expanded in individual
Lagrange elements whereas for Splines θ and p
expanded in individual knot-spans ⇒ as the
polynomial order increases the pressure space for
Splines increases compared to Lagrange

Qp/Qp−1: u continuous of order p with Cp−1 continuity on
”patches”, θ and p also continuous, but of order
p − 1 with Cp−2 continuity on ”patches”



Babuška–Brezzi condition – Volumetric locking

I To avoid volumetric locking the Babuška–Brezzi condition
must be satisfied

nu ≥ nθ = np

where nu, nθ and np denote the number of unknown
displacement ũ, volume θ̃, and pressure parameters p̃

I In order to predict the propensity of volumetric locking, we
define the constraint ratio

rc =
nu

np
=

nu

nθ

I The ideal value of the ratio rc would then be the ratio
between number of equilibrium equations (= nsd), divided by
number of incompressibility conditions (=1)
⇒ rc = nsd ⇒ the ideal ratio would be rc = 2 in 2D

I If rc < nsd volumetric locking may be anticipated



Q2/P1 and Q2/Q1 mixed Lagrange elements

Q2/P1

t t t

t t t

t t t

��AA ��AA

��AA

Q2/Q1

t t t

t t t

t t t

t = Displacement node

= Pressure/volume change node

��AA = Internal pressure/volume change node

rc = 8
3 ≈ 2.7 rc = 8

1 = 8

limp→∞ rc = 4 limp→∞ rc = 2



Q2/P1 and Q2/Q1 mixed Spline elements

Q2/P1

t t t

t t t

t t t

4 4

4

4 4
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4 4

4

4 4
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Q2/Q1

t t t

t t t

t t t
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t = Displacement node

� = Pressure/volume change node

4 = Internal pressure/volume change node

rc = 2
3 rc = 2

1 = 2

limp→∞ rc = 0 limp→∞ rc = 2



Implementational issues

I IFEM : Object-oriented toolbox for isogeometric FE analysis
I Problem-independent computational core
I 2D and 3D continuum formulations, Kirchoff–Love thin plate

and shell formulations
I Lagrange, Spectral, Splines and NURBS basis functions

I Basis function evaluation (Splines/NURBS) based on GoTools
http://www.sintef.no/Projectweb/Geometry-Toolkits/GoTools

I Element-level linear algebra: Use machine-optimized BLAS
I For higher-order elements, the element matrices become large
I Important to express the nonlinear FE formulation on matrix

form (Voigt notation) — not tensor form

I Linear equation solvers
I SuperLU (direct methods) http://crd.lbl.gov/~xiaoye/SuperLU

I PETSc (iterative methods) http://www.mcs.anl.gov/petsc

I Parallelization in progress (based on MPI message passing)

http://www.sintef.no/Projectweb/Geometry-Toolkits/GoTools
http://crd.lbl.gov/~xiaoye/SuperLU
http://www.mcs.anl.gov/petsc


Implementing the weak form (reference config.)

I Using tensor notation:

kab
mn =

∫
Ω0

Na,iFmjCijklFnkNb,ldΩ

I Gives 8 nested loops, within
the integration point loop!!

I 11400 DOFs ⇒ 48s CPU time

for one element assembly step

(89% of total simulation time)

T = 2665s

I Using Voigt notation:

k =

∫
Ω0

BTDTBdΩ

I Implemented by two calls to
BLAS-subroutine DGEMM

I 11400 DOFs ⇒ 19s CPU time

for one element assembly step

(82% of total simulation time)

T = 1176s
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Numerical examples



Numerical examples

I The performance of the three-field mixed
forms:

I Qp/Pp−1 : discontinuous p and θ, and
I Qp/Qp−1 : continuous p and θ

is numerically assessed and compared to the
one-field Qp displacement formulation with
Splines and Lagrange basis functions

I The accuracy and the convergence characteristics
are assessed in the finite deformation regime for
elastic and elasto-plastic materials



Cook’s problem: Linear plane stress problem

(48,44)

(48,60)

x,u

y,v

(0,44)

1
16

C

(0,0)

E = 1.0
 = 1/3
t = 1.0

I Analyzed with NURBS and
Lagrange Qp elements,
p = 1, 2

I Reference solution obtained
with a very fine mesh of LST
elements (ndof = 41586)



Cook’s problem: Error in vertical tip displacement, vC
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FEA Q4
IGA P1
FEA Q9
IGA P2

I As expected NURBS and Lagrange elements of polynomial
order p = 1 coincide

I NURBS converge at the same rate but is more accurate than
Lagrange elements of polynomial order p = 2

⇒ NURBS perform better than Lagrange



End loaded cantilever beam: Linear plane stress problem
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E = 1000
= 0.25
t = 1

I Exact solution may be obtained for this particular problem

I Analyzed with NURBS and Lagrange Qp elements, p = 1, 2

I Note: In order to be compatible with the exact solution, a
parabolic transverse traction field acting downward and a
normal traction field equivalent to the transverse shear force
and the moment, respectively, must be applied to the
supported end



End loaded cantilever beam: Error in potential energy
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I As expected NURBS and Lagrange elements of polynomial
order p = 1 coincide

I NURBS converge at the same rate but is more accurate than
Lagrange elements of polynomial order p = 2

⇒ NURBS perform better than Lagrange !



Compression of a Thick Cylinder

−p0 · ex

��@@��

Length : L = 30.0
Outer radius : Ro= 10.0
Inner radius : Ri = 8.0
Young’s modulus : E = 16800
Poisson’s ratio : ν = 0.4
Load intensity : p0 = 470.0

Note: Quadratic NURBS describe exact geometry in C0 !



Compression of a Thick Cylinder

?????

−t̄

6
6
6
6

t̄ = p0
Ro−Ri

· ex = 235.0 · ex

� uy = 0 (symmetry)

� uy = 0 (symmetry)

��) uz = 0 (symmetry)

��) ux = uy = uz = 0

I Due to symmetry, only one
quarter is modelled

I One element over the
thickness, varying in length
and circumferential direction

I NURBS and Lagrange Qp

elements, p = 2, 3, 4

I Compressible neo-Hookean
material model

Ψ(J, b) =
1

2
µ(trb−3)−µ ln J+

1

2
λ(ln J)2

I Load is here applied as two
oppositely directed
tangential tractions



Compression of a Thick Cylinder
Deformed configuration with the Cauchy stress σxz

Let’s look at the max vertical displacement, at this point

d
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A
A
A
A
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Considering basis order through thickness (NURBS)

⇒ We need 3rd order in thickness direction



Convergence for NURBS



Convergence for NURBS and Lagrange

⇒ NURBS perform better than Lagrange



Torsion of a square column

HH
H

��
�

1m

5m

1m

PPPi ux = uy = uz = 0

���9
ux = sin θ(x − x0) + cos θ(y − y0)− (x − x0)

uy = cos θ(x − x0)− sin θ(y − y0)− (y − y0)

uz = 0

6
6θ

Modified neo-Hookean material model:

Ψ(J, I ) = 1
4
κ(J2 − 1− 2 ln J) + 1

2
µ(I − 3)

Bulk modulus : κ = 400942.0 N/m2

Shear modulus : µ = 80.1938 N/m2

⇒ Poisson’s ratio : ν = 0.4999



Torsion of a square column: Q2/P1 (θ = 10.0 rad ≈ 573o)

I 5× 5× 17 control points
⇒ 1125 DOFs

I Analyzed with both Qp,
Qp/Pp−1 and Qp/Qp−1

elements (p = 1, 2, 3, 4)

I Increment size: dθ = 0.01



Stored elastic strain energy for spline elements
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⇒ Mixed Q2/P1 spline element fails last



Torsion of a square column: Failure angle (θf )

Approx. Grid Formulation θf [rad]

Lagrange/
4× 4× 16

Q1 29.45
Splines Q1/P0 21.12

Lagrange 2× 2× 8
Q2 10.39

Q2/P1 19.22

Splines 3× 3× 15
Q2 24.93

Q2/P1 37.22

Splines 2× 2× 14
Q3 23.86

Q3/P2 27.36

Lagrange 1× 1× 4
Q4 0.12

Q4/P3 14.96

Splines 1× 1× 13
Q4 0.27

Q4/P3 15.30

Number of degrees of freedom = 1125 for all grids !

Prescribed incremental size dθ = 0.01 [rad] for all analyses !



Necking of elastic-plastic tension strip:

666666

??????

`

w

I Geometry:

Length : ` = 53.334
Width : w = 12.826
Center width : wc= 0.982w

I Finite strain elastic-plastic model with a J2 yield
function; uniaxial yield stress given by:

σy = σ∞ + (σ0 − σ∞) exp(−βep) +

√
2

3
hep

Bulk modulus : κ = 164.206
Shear modulus : µ = 80.1938
Initial yield stress : σ0 = 0.45
Residual yield stress : σ∞ = 0.715
Isotropic hardening : h = 0.12924
Saturation exponent : β = 16.93
Effective plastic strain : ep



Necking of elastic-plastic tension strip:

a) Mesh for one quadrant of the strip with
6 knot spans in the width and 12 in length
⇒ 7× 13 grid points (basis functions)

b) Mises stress distribution at final
configuration obtained with the Q3/P2

spline element with a 49× 97 grid



Necking of elastic-plastic tension strip : 7× 13 grid points
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⇒ As expected the Q1 element exhibit volumetric locking !



Necking of elastic-plastic tension strip : 7× 13 grid points
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⇒ Results nearly indistinguishable for p > 1 !



Necking of elastic-plastic cylinder

Single-patch Multi-patch

?

6

symmetry - 1
8

is modelled

HHY ��*

ux = 0 �
�*

uy = 0HHY

uz = 0
I

Cylinder length : ` = 53.334

Cylinder diameter : d = 12.826

Center diameter : dc = 0.982d

Note: Quadratic NURBS describe exact geometry in C0 !



Necking of elastic-plastic cylinder

Single-patch analysis Multi-patch analysis

I Mises stress distribution at final configuration

I Three dimensional analysis

I Approximation: Q2 NURBS element

I Discretization: 13× 25 control points



Necking of elastic-plastic cylinder : Q2/P1 NURBS element
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3D NURBS solution

⇒ As expected the SP coincide with the axisymmetric solution !

⇒ As the mesh is refined the MP converges to the SP solution !



Necking of elastic-plastic cylinder : 13× 25 grid points
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Axisymmetric Spline solution

⇒ As expected the Q1 element exhibit volumetric locking !

⇒ Continuous mixed Qp/Qp−1 most accurate !



Necking of elastic-plastic cylinder : Qp/Qp−1; p = 2, 3
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  Q3/Q2 49x97

 Q2/Q1 97x193
 Q3/Q2 97x193

Axisymmetric Spline solution

⇒ Discretization more important than polynomial order !

⇒ Continuous mixed Q2/Q1 almost same accuracy as Q3/Q2 !



Necking of elastic-plastic cylinder

I Mises stress distribution at final configuration

I Axisymmetric analysis

I Approximation: Q3/P2 mixed spline element

I Discretization: 151× 301 control points

I Number of unknowns: 90 299



Concluding remarks:

I By means of numerical examples, the performance of isogeometric
Splines and NURBS elements have been assessed on problems
involving compressible and nearly incompressible hyperelasticity and
finite multiplicative plasticity

I A remarkable ability in capturing strain localization phenomena
has been verified for both plane strain, axisymmetric and
three-dimensional isogeometric solid elements

I While continuous mixed Qp/Qp−1 is preferable for both nearly
incompressible elastic materials and finite strain plasticity

I Discontinuous mixed Qp/Pp−1 is far more efficient in terms of
computer resources

I Further work:

I A more detailed study of the 3D necking problem with
adaptively refined meshes in the necking zone

I Isogeometric finite element analysis of thin-walled structures

Thank you for your attention!


