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Penalized likelihood generates a PATH of solutions

Consider an experiment: |Γ| genes measured across |T | time points.
Assume n iid samples y(1), . . . , y(n), where y(i) = (y (i)

1 , . . . , y (i)
ΓT ).

Assume Y(i) ∼ N(0,K−1), then

Likelihood:
l(K |y) ∝ n

2 {log(|K |)− tr(SK)} .

AIM: Optimization of penalized likelihood:

K̂λ := argmaxK{l(K |y)}

subject to
K � 0;
||K ||1 ≤ 1/λ ... for λ in some range!!;
some factorial colouring F .
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Between proximity and truth
True process for data Y :

Y ∼ Q.

A statistical model is a collection of measures:

Mi = {Pθ | θ ∈ Θi}

... and typically we consider several: M = {M1, . . . ,Mk}.

What is the best model?
“Proximity”: the model that is closest to the truth:

min
i≤k

KL(Pθ̂i
;Q).

“Truth”: the model that is most likely to be the truth:

max
i≤k

P(Mi |Y ).
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Truth

With flat prior on ΘM and M, model probability for M∈M is:

p(M|y) ∝ p(y |M)/p(y)

∝
∫

ΘM
en ¯̀(θ)∂θ

≈ e`(θ̂)
∫

ΘM
e−

1
2 (θ−θ̂)tn ∂2

∂θ2
¯̀(θ̂)(θ−θ̂)∂θ

≈ e`(θ̂)(2π)−p/2n−p/2
∣∣∣∣∣ ∂2

∂θ2
¯̀(θ̂)

∣∣∣∣∣
−1/2

,

where p = dim(ΘM) and ¯̀(θ̂) = `(θ̂)/n.

Schwarz (1978) ignored terms not depending on n:

p(M|y) ≈ el(θ̂)n−p/2, for large n.
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BIC: Bayesian information criterion

By applying the − log and ignoring constant terms c:

BIC(M) = −2l(θ̂) + p log(n).

Minimizing BIC corresponds to maximizing posterior model probability.

Define model weights W (M),

W (M) = e−BIC(M)/2,

which rescaled correspond to posterior model probabilities,

p(Mi |y) =
W (Mi )∑
M∈M W (M)

.
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BIC for Gaussian graphical models

The BIC for an estimated Gaussian graphical model K̂ :

BIC(K̂ ) = n(− log |K̂ |+ Tr(SK̂ )) + pK̂ log(n),

where
pK = |{unique non-zeroes in K}|,

which is less than p(p − 1)/2.

But...
BIC is an asymptotic approximation. What is n??
For penalized estimate K̂ are number of parameters not smaller??
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eBIC: extended Bayesian information criterion

The BIC for an estimated Gaussian graphical model K̂ :

eBICγ(K̂ ) = n(− log |K̂ |+ Tr(SK̂ )) + pK̂ log(n) + 4γpK̂ log(p),

where

pK = |{unique non-zeroes in K}|
p = number of nodes
γ = tuning paramter(0 ≤ γ ≤ 1)

If

γ = 0 ⇒ ordinary BIC
γ = 1 ⇒ additional sparsity
γ = 0.5 ⇒ good trade-off (Foygel & Drton, 2010)
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Proximity
Let the true density of the data Y be:

Y ∼ q = dQ.

The Kullback-Leibler (KL) divergence between fitted and true model

KL(θ̂i ) =

∫
q(y) log q(y)dy −

∫
q(y) log p(y ; θ̂i )dy

= C − Eq(`(θ̂i )

≈ C − `(θ̂i ) + p∗i
where

p(.; θ) is density associated with Pθ.
p∗i = Trace

(
J−1

i Ki
)
≈ dim(Θi ),

where Ji and Ki are Fisher informations using model Mi :

Ji = Eg

(
∂2 log f (Y , θ̂i )

∂θ∂θt

)
, Ki = Vg

(
∂ log(f (Y , θ̂i )

∂θ

)
.
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AIC: Akaike’s information criterion

By applying the − log and ignoring constant terms c:

AIC(M) = −2l(θ̂) + 2p.

Minimizing AIC corresponds to maximizing posterior model probability.

Define Akaike weights W (M),

W (M) = e−AIC(M)/2,

which rescaled correspond to probability weights that add up to one,

p(Mi ) =
W (Mi )∑
M∈M W (M)

.
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AIC for Gaussian graphical models

The AIC for an estimated Gaussian graphical model K̂ :

AIC(K̂ ) = n(− log |K̂ |+ Tr(SK̂ )) + 2pK̂ ,

where
pK = |{unique non-zeroes in K}|,

which is less than p(p − 1)/2.

But...
AIC is an asymptotic approximation. What is n??
For penalized estimate K̂ are number of parameters not smaller??

In the next slides, we propose three alternatives.
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1. Exact AIC

KL(K0||K̂ ) =
1
2{Tr(K̂Σ0)− log |K̂Σ0| − p}

Scaling this by 2 and ignoring a constant

2KL(K0||K̂ ) ∼= −{log |K̂ | − Tr(K̂S)}+ 2 · 1
2{Tr(K̂ (Σ0 − S))}.

We can write this as

2KL(K0||K̂ ) ∼= −2`(K̂ ) + 2× 1
2{Tr(K̂ (Σ0 − S))}.

Definition (Degrees of freedom in Gaussian graphical model)
Let Y ∼ N(0,K−1

0 ) and K̂ an estimate of K0:

dfK̂ =
1
2{Tr(K̂ (Σ0 − S))}.
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Approximate Exact AIC

We obviously don’t know Σ0, but we can estimate it:

Σ̂0 = πS − (1− π)diag{σ2
11, . . . , σ

2
pp},

for some tuning paramter π.

Definition (Approximate Exact AIC)
Let Y ∼ N(0,K−1

0 ) and K̂ an estimate of K0:

AIC(K̂ ) = −2`(K̂ ) + 2d̂f,

where
d̂f =

1
2{Tr(K̂ (Σ̂0 − S))}.
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2. Exact GIC

Problem of AIC: K̂λ is not a MLE.

GIC for M-estimator K̂ derived by Konishi & Kitagawa (1996):

GIC = −2
n∑

k=1
lk(K̂ ; xk) + 2tr{R−1Q}, (1)

where R and Q are square matrices of order p2 given by

R = −1
n

n∑
k=1
{Dψ(xk ,K )}>

∣∣
K=K̂ ,

Q =
1
n

n∑
k=1

ψ(xk ,K )Dlk(K )
∣∣
K=K̂ .

Problem: Bias term in (1) requires inversion of d2 × d2 matrix R.
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Approximate GIC (Abbruzzo, Vujacic, Wit)

We derived an explicit estimator of KL that avoids matrix inversion:

ĜIC(λ) = −2l(K̂λ) + 2d̂fGIC,

where

d̂fGIC =

∑n
k=1 c(Sk ◦ Iλ)>c(K̂λ(Sk ◦ Iλ)K̂λ)

2n − c(S ◦ Iλ)>c(K̂λ(S ◦ Iλ)K̂λ)

2 ,

where
c() is the vectorize operator,
Sk = xkxT

k ,
Iλ = 1 * (K̂λ != 0), an indicator matrix.
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Approximate GIC: Simulations
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Bias term (left) and KL divergence (right) estimates for n = 100, d = 50.
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3. Exact Cross-validation (CV)

Ignoring an additive constant, the KL divergence is:

KL(K0||K̂ ) = −1
2 log |K̂ |+ EΣ0

1
2{Tr(K̂XX t)}

The idea of cross-validation is to replace the final expectation by

KL(K0||K̂ ) ≈ − 1
2n

n∑
k=1
{log |K̂−(k)|+ Tr(K̂−(k)xkx t

k)}

Clearly, this would require recalculating the estimate K̂−(k) many times.

Ernst Wit Model selection in penalized Gaussian graphical models



Approximate Cross-validation (Vujacic, Abbruzzo, Wit)
We write the KL divergence as follows,

KL(K0|K̂λ) = −1
n l(K̂λ) + bias,

where l(K ) = n{log |K | − tr(KS)}/2 and bias = tr(K̂λ(K−1
0 − S))/2.

Definition
LOOCV-inspired estimate of Kullback-Leibler divergence

KLCV (λ) = −1
n l(K̂λ)+

∑n
i=1 c[(K̂−1

λ − Si ) ◦ Iλ]>(K̂λ ⊗ K̂λ)c[(S − Si ) ◦ Iλ]

n(n − 1)
,

where
c() is the vectorize operator,
Sk = xkxT

k ,
Iλ = 1 * (K̂λ != 0), an indicator matrix.
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Proof

LOOCV = − 1
2n

n∑
i=1

f (Si , K̂ (−i))

= −1
2 f (S, K̂ )− 1

2n

n∑
i=1

[f (Si , K̂ (−i))− f (Si , K̂ )]

≈ −1
n l(K̂ )− 1

2n

n∑
i=1

[df (Si , K̂ )

dΩ

]>
c(K̂ (−i) − K̂ ).

Matrix differential calculus: df (Si , K̂ )/dΩ = c(K̂−1 − Si ).
The term c(K̂ (−i) − K̂ ) is obtained via the Taylor expansion

0 ≈ df (S, K̂ )

dΩ
+

d2f (S, K̂ )

dΩ2 c(K̂ (−i) − K̂ ) +
d2f (S, K̂ )

dΩdS c(S(−i) − S).

Inserting: df (S, K̂ )/dΩ = c(K̂−1 − S), d2f (S, K̂ )/dΩdS = −Ip2 ,
d2f (S, K̂ )/dΩ2 = −K̂−1 ⊗ K̂−1

and consequently
c(K̂ (−i) − K̂ ) = −(K̂ ⊗ K̂ )c(S(−i) − S).
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KLCV simulation results

d=100 KL ORACLE KLCV AIC GACV
n=20 8.06 8.60 12.24 28.59

(0.37) (0.45) (0.28) (19.94)
n=30 6.87 7.29 10.59 32.07

(0.34) (0.39) (0.41) (2.77)
n=50 5.24 5.63 7.33 16.93

(0.27) (0.33) (0.81) (1.40)
n=100 3.34 3.57 3.63 6.81

(0.19) (0.23) (0.48) (0.52)
n=400 1.13 1.20 1.17 1.24

(0.07) (0.08) (0.08) (0.07 )
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Conclusions

BIC aims to find true model
AIC aims to come closest to the truth
BIC gives sparser model than AIC (typically)
AIC/BIC have asymptotic issues.
What are number of parameters for penalized inference?
Improved versions are available!

Ernst Wit Model selection in penalized Gaussian graphical models


