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Epidermal nerve fibers

ENFs are thin nerve fibers in the epidermis (the outmost living
layer of the skin)
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Problem

Kennedy et al. (1999): Nerve fiber loss due to neuropathy does
not seem to result in random removal of nerve trunks, rather the
remaining nerves seem arranged in clusters
→ Can we quantify this observation?

Is the spatial structure of ENFs affected by some (non-spatial)
covariates, especially whether the subject is suffering from diabetic
neuropathy?

How to include non-spatial covariates in the spatial analysis?
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Data

I 32 healthy subjects and 15 subjects with (mild or moderate)
diabetic neuropathy

I Two skin blisters (3-6 samples) from calf of each subject
(replicates)

I Age, gender and body mass index (BMI) of each subject
available
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Spatial pattern of ENF entry (base) and end points

Locations of base points (open circles) and end points (small black
dots) for one healthy subject (171)
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Remark

The data are fibre patterns in 3D (with z direction much smaller
than x and y directions) but we have looked only at the spatial
pattern of (base points and) end points in 2D

I end points of ENFs sense heat and pain, and play, therefore, a
more important role than the ENFs themselves (fibers can be
omitted)

I our focus is on the spatial pattern of ENF coverage across the
skin (2D projection appropriate)

I point patterns of ENF base and end points regarded as
realizations of stationary spatial point processes

Our data are point patterns with replicates and non-spatial
covariates
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Second-order summary statistic

Ripley’s K function: λK (r) is the expected number of further
points within distance r from a typical point of the process, where
λ is the intensity (mean number of points per unit area) of the
process

We use a variance stabilizing and centered version of the K
function, namely

L(r)− r =
√
K (r)/π − r ,

which equals 0 under complete spatial randomness. Values less
than zero indicate regularity and values larger than zero clustering.
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Individual L(r)− r functions for end points

Subject 171 Subject 172 Subject 259 Subject 276

0

25

50

0 2
5

5
0

7
5

1
0

0

0 2
5

5
0

7
5

1
0

0

0 2
5

5
0

7
5

1
0

0

0 2
5

5
0

7
5

1
0

0

r

C
e

n
te

d
 L

 f
u

n
c
ti
o

n

Subject 171 and Subject 172 are healthy, the other two diseased
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How to include non-spatial covariates?

I Pooled summary statistics for groups (Waller et al., 2011)

I Summary statistic modeled by using linear mixed models
(Myllymäki et al. 2012)

I Summary statistic modeled by using hierarchical Gaussian
process regression (Myllymäki et al. 2013)
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Linear mixed models for centered L function

L function modeled by using linear mixed models usually used to
model growth curves, where

I distance r is the “time variable”

I fixed effects: disease status, age, gender, BMI, r , interactions
between the covariates, interaction between the covariates
and distance r

I random effects: intercept and r (both subject specific and
sample specific)
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Limitations

I We assumed linear dependence between the covariates and
the characteristic (centered L function)

I L(r)− r function modelled as a fourth order polynomial
(somewhat ad hoc)
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Hierarchical Gaussian process regression model for
centered L function

I Flexible non-parametric models for making inference about
the relationship between some characteristics (centered L
function) and covariates

I We do not need to assume linear or any other particular form
of dependence between the characteristics and covariates, a
priori

I Bayesian approach
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Hierarchical model

Our model is

ysjk = Lsj(rk)− rk = f1(xs , rk) + f2(s, rk) + f3(s, j , rk) + εsjk ,

where

I f1 models the effect of age, gender, BMI and disease status
(collected in xs) together with distance r

I f2 models the subject-specific effect

I f3 models the sample-specific effect

I latent function f = f1 + f2 + f3
I εsjk ’s are independent and ∼ N(0, σ2)
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Hierarchical model: f1 (covariates) and f2 (subject-specific
effect)

ysjk = Lsj(rk)− rk = f1(xs , rk) + f2(s, rk) + f3(s, j , rk) + εsjk

f1 is a Gaussian process (GP) with

I mean L(rk)− rk
I covariance function having an own length scale parameter for

each covariate (age, gender, BMI, disease status) and for r

I values of f1 are correlated within a subject but also between
subjects due to similar covariate values.

f2 is a GP with

I mean zero

I covariance function, which is a priori the same for each subject
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Hierarchical model: f3 (sample-specific effect)

f3 is a GP with

I mean zero

I covariance function, where the variance parameter σ23s is
allowed to vary from subject to subject

I values of f3 are correlated only within a sample

Subject 171 Subject 172 Subject 259 Subject 276
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Hierarchical model

I Observation model y|f , σ2 ∼
∏
i
N(yi |f , σ2)

I GP prior

f (x)|θ ∼ GP(m(x), k1(x, x′|θ1) + k2(x, x′|θ2) + k3(x, x′|θ3))

I Hyperpriors

σ2 ∼ p(σ2)

θ1 = (φ1, σ
2
1) ∼ p(φ1)p(σ21)

θ2 = (φ2, σ
2
2) ∼ p(φ2)p(σ22)

θ3 = {φ3, σ23s , s = 1, . . . ,N} ∼ p(φ3)
N∏

s=1

p(σ23s |s2σ)

I Hyper-hyperprior s2σ ∼ p(s2σ)
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Choices

I r = 0, 12, 24, ..., 96 (end points)

I Piecewice polynomial compactly supported covariance
functions (less smooth for f3 than for the first two
components)

I Half-Student t and scaled inverse χ2 priors for
hyperparameters and for s2σ
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Bayesian inference and posterior predictive L functions

Since f and the likelihood are Gaussian, we can integrate out the
latent function and obtain the log marginal likelihood

log p(y|X, θ, σ2) = −n

2
log(2π)− 1

2
log |K + σ2I | − 1

2
yT (K + σ2I )−1y,

where θ = (θ1, θ2, θ3) collects all the parameters of f and K is the
covariance matrix.

The posterior distribution of the latent function f1

p(f1|y,X) =

∫
p(f1|y,X, θ, σ2)p(θ, σ2|y,X)dθdσ2

can be obtained by Monte Carlo integration over the
hyperparameters
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Computations

I To obtain the posterior distribution of the parameters, we run
an MCMC simulation updating in turns the
hyper-hyperparameter and the hyperparameters

I For sampling the Matlab toolbox GPstuff (Vanhatalo et al.,
2013) is used
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Mean prediction centred L curves (mean of the posterior
predictive distribution of f1) for end points

0 20 40 60 80 100

0

5

10

15

20

25

30

35

0 20 40 60 80 100

0

5

10

15

20

25

30

35

0 20 40 60 80 100

0

5

10

15

20

25

30

35

0 20 40 60 80 100

0

5

10

15

20

25

30

35

0 20 40 60 80 100

0

5

10

15

20

25

30

35

0 20 40 60 80 100

0

5

10

15

20

25

30

35

Female (first row), male (second row)
From left to right: Age 30, 45, 60; BMI is fixed to 25
Healthy (black), diseased (grey)
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Mean prediction centred L curves for end points
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Results

Base points: covariates (including disease status) do not seem to
have any effect on the ENF pattern

End points

I diseased patterns clearly more clustered than healthy ones

I difference between healthy and diseased patterns is more clear
for women than for men

I difference between healthy and diseased patterns is more
easily seen for younger subjects and subjects with high BMI
than for older subjects and subjects with low BMI

I effects of age, gender and BMI not evident
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Preliminary 2D point process models

We know which end points are connected to which base
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Preliminary 2D model

Non-orphan cluster (NOC) model:

I Base points are assumed to be a realization of a Poisson
process (data from thigh)

I End points
I number of end points: (e.g.) Poisson distribution
I distance from each end point to its entry point: Gamma

distribution
I direction of the end point: von Mises distribution, where angles

opposite to the nearest neighbouring entry point are favoured

Reference: Olsbo et al. (2013)
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Some remarks

I Model the locations of the base points first, and given a
realization of base points, the end points are modeled
(hierarchical structure)

I Locations of end points may not be independent of each other
as in the preliminary model
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Some things to think about

I Compare different body parts (thigh, calf, foot)

I 3D spatial point (and fibre) process models to incorporate
further details in ENF structure

I Spatio-temporal models for ENF growth

I How to use replicates?

I How to include non-spatial covariates in the models?
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