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0.1 The Adaptive Enhanced ABC

In sequential ABC methods, a sequence of target distributions is defined along
with a sequence of decreasing tolerance values, as ft = f(ϕ|ρ(S(D),S(D′)) <
εt). Starting from the largest tolerance and proceeding in order, ABC-sampling
is performed for each εt until an approximation of ft is obtained. When ap-
proximating f1, parameters are proposed from the prior distribution, otherwise
ft is used to construct a proposal distribution for t + 1. Then, to account for
the effect of this sampling distribution, an importance weight is given to each
accepted parameter. Finally, when the parameters are sampled according to
these weights, they are distributed as in ft+1.

In our approach εt = (εt1, ε
t
2, ε

t
3, ε

t
4), and for each k = 1, ..., 4, we require

εtk ≥ εt+1

k . Rather than defining the sequence of tolerances in advance, we set
εt+1 dynamically, based on the approximation of the distribution of the discrep-
ancies {dk} obtained with εt. We construct empirical distribution functions for
the discrepancies of each simulated summary, denoted with Gt

k, and the joint
empirical distribution function for all the four discrepancies, denoted with Gt.
We adjust the tolerance for generation t + 1 by numerically searching for such
values of εj and q, so that the following holds:

Gt(ε1, ε2, ε3, ε4) = a and Gt
j(εj) = q, for all j = 1, ..., 4 (1)

The resulting vector of tolerances ε is taken as tolerance for generation t + 1.
Now ε is such that a proportion a of the accepted parameters in generation t

was within ε, and εj is the same quantile of each the sets of discrepancies {dj},
corresponding to the accepted parameters of the previous generation. This
approach is similar to that proposed by Del Moral, Doucet and Jasra (2011),
except that they consider the tolerance as one-dimensional, whereas having a
vector of tolerances complicates the problem because Gt(ε1, ε2, ε3, ε4) = a does
not have a unique solution.

Prior distributions were used as proposal distributions in the first ABC-
generation. In the following generations, the accepted parameters of the pre-
vious generation are sampled according to their importance weights, and to
improve the search on the parameter space, each parameter ϕ is then perturbed
randomly with a perturbation kernel K(ϕ | •) to ϕ′ , and a dataset is gen-
erated from D′ ∼ Φ(•,ϕ′). For the perturbation kernel K(ϕ, •), we use the
multivariate normal distribution with mean ϕ and the covariance matrix esti-
mated from the accepted parameters in the previous generation. See Filippi et
al. (2011) for a discussion of such adaptive tuning of the perturbation kernels.
Algorithm 1 below describes the computation in more detail, where µ(ϕ) is used
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to denote the prior distribution of the parameters. The algorithm is similar to

Algorithm 1 The adaptive enhanced ABC-PRC algorithm

1: Initialization: Set ABC-generation indicator to t = 1.
2: Set initial tolerance ε1 and sample size n.
3: for j = 1 to n do

4: repeat

5: Sample ϕt(j) ∼ µ(ϕ) and Dt ∼ Φ(•|ϕt(j))
6: Determine dt(j),
7: until dt(j) is within εt.
8: for j = 1 to n do

9: Set wt(j) = 1

n
.

10: Set ABC-generation indicator to t = t+ 1.
11: Initialize the tolerance εt and K(ϕ, •), based on

{ϕt−1(k), dt−1(k), wt−1(k) | k = 1, ..., n}.
12: for j = 1 to n do

13: repeat

14: Sample ϕ∗ from {ϕt−1(k) | k = 1, ..., n} according to
{wt−1(k) | k = 1, ..., n},

15: Sample ϕt(j) ∼ K(ϕ∗, •) and Dt ∼ Φ(•|ϕt(j))
16: Determine dt(j),
17: until dt(j) is within εt.
18: for j = 1 to n do

19: Set wt(j) ∝ µ(ϕt(j))∑
n

i=1
wt−1(i)K(ϕt−1(i),ϕt(j))

, so that
∑n

j=1
wt(j) = 1.

20: Determine whether to continue for a further ABC generation. If

the decision is to continue go to step 10.

that presented by Sisson, Fan and Tanaka (2007), except that the tolerances are
adjusted as we have described. We perform sampling for each ABC-generation
t until a sample size of n = 10, 000 accepted parameter values is reached. Toler-
ance for each generation is adjusted using a = 0.1, and the condition 1. For the
first generation, training simulations were utilized to set the tolerance according
to this criteria. Whether further ABC-generations are needed is determined by
comparing the two most recently sampled approximate posterior distributions
by manual inspection.
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Web Figure 1
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Figure 1: The figure shows the proportions of different strains among all the
pneumococcal isolates obtained from each DCC. The total numbers of isolates
obtained from the particular DCC are shown above the charts. The last pie
chart illustrates the strain distribution among all positive swabs.
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Web Figure 2
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Figure 2: Figure shows the distribution for observations on Shannon index,
first column being the simulation results with T = 10 and the second with
simulation time T = 20. Each row corresponds to a different model parameter
combination. Parameter combinations corresponding to each row are given in
Web Table 1. The similarity of distributions with both simulation times suggest,
that T = 10 was enough long time for sampling from the stationary distribution
of Shannon index. By repeating the comparison for other summaries of the
data, we conclude that for all the tested parameter combinations, T = 10 is a
simulation time yields observations distributed that are likely distributed similar
to stationary distribution.
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Web Figure 3
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Figure 3: In the first row we show the correlation between two summary pairs as
observed in the data, while in the second row we show the correlations predicted
by the posterior predictive simulations.
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Web Figure 4
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Figure 4: The figure shows the predicted prevalences of colonization and co-
infection, in a single DCC consisting of 53 individuals.
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Web Table 1

Table 1: The parameters used in simulation of distributions shown in Web
Figure 2

β Λ θ

A 10.6000 1.0000 0.0100
B 1.4487 0.2472 0.1000
C 4.7700 1.8866 0.0040
D 2.4733 0.0592 0.7300
E 0.0018 1.7472 0.1800
F 3.0984 0.6238 0.1408
G 5.3710 0.8471 0.0649
H 2.3323 1.2100 0.0169
I 2.0386 0.0846 0.8683
J 7.1338 1.4485 0.0939
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