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Introduction

In recent years, high-dimensional regression problems have become one of

the most active research area. The standard penalized regression methods

(Lasso) limit the search to linear relationships between the covariates and the

response. We focus on the special case of nonlinearity as nonlinear monotone

effects on the response, as is often a natural assumption in medicine and

biology. The additive components in the model are represented by monotone

spline (I-spline) basis functions and the component selection becomes that

of selecting the groups of coefficients. We use a recent procedure called

Cooperative Lasso to select sign-coherent groups, that is selecting the groups

with either non-negative or non-positive coefficients.

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

x

ftr
ue

True
Lasso
Adaptive−Lasso
BS−Lasso
Liso

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

x

ftr
ue

True
MS−Lasso
Adaptive MS−Lasso

True monotone function and fitted regression curves from Lasso, Adaptive

Lasso, BS-Lasso, LISO, MS-Lasso and Adaptive MS-Lasso estimators.

Regression Model

Consider the additive model,

yi = β0 +
P∑

j=1

gj(xij) + εi, i = 1, . . . , n

where yi is the response, xi = (xi1, ..., xip)
t the vector of covariates, β0

is the intercept, gj’s are unknown functions to be estimated and ǫi is the

unobserved random error with mean 0 and variance σ2. gj’s as a linear

combination of m monotone basis functions;

gj(xj) =
m∑

k=1

βjkI
(2)
k (xj), 1 ≤ j ≤ P.

where I
(2)
k (·) is monotone I-spline basis function of order 2 and βjk is kth

mototone spline coefficient for the jth covariate.

Monotone spline functions, I-splines are integrated version of M-splines intro-

duced by Ramsay(1988). I-splines can be used as basis splines for regression

analysis and data transformation when monotonicity is desired.

Monotone Splines Lasso (MS-Lasso)

•The Monotone splines lasso combines the idea of I-splines with the Coop-

erative lasso (Chiquet et al.,2012) in high-dimensional setting (p >> n).

•We constitute a group in the Cooperative lasso by letting each covariate

represented via an I-splines basis.

•We need more flexible than the linear lasso method but more restrictive

than the general nonlinear methods. MS-Lasso is more flexible than Liso,

obtaining a smooth representation of the functions.

We define P groups, each group corresponding to the basis functions and

the paprameters for each covariate with equal group size m.

Let β = (β1, . . . ,βP )t ∈ R
Pm. We define βGj

∈ R
m as the vector (βj)j∈Gj

,

βj = (βj1, . . . , βjm)t

The group lasso norm for the groups {Gj}
P
j=1 is

||β||group =
P∑

j=1

wj||βGj
||.

where wj > 0 are fixed weights for each covariate and it is used to adapt
the amount of penalty for each group.

Monotone Splines Lasso (MS-Lasso)

The MS-Lasso estimates of βMS are defined as

β̂
MS

= argmin
β∈R

{
1

2
||y − Zβ||2 + λ||β||coop

}

,

where Z is n× (pm) design matrix where all covariates are represented by
a centered I-spline basis. y = (y1 − ȳ, ..., yn − ȳ)t is a vecotor of length n

and λ ≥ 0 is a common tuning parameter to all groups.

The cooperative lasso norm is

||β||coop = ||β+||group + ||β−||group =
P∑

j=1

wj

(
||β+

Gj
|| + ||β−

Gj
||

)
,

where β+ and β− are the componentwise positive and negative part of β,
that is, βj

+ = max(0, βj) and βj
− = max(0,−βj) respectively.

Simulation Results

We generate P = 1000 independent covariates and error εi with SNR ≈ 4,

the number of replication is 100 and the sample size n = 50. The response

variable generated from y = g1(x1) + g2(x2) + g3(x3) + ga
4(x4) + ǫ.

True and fitted curves from all simulation runs
Lasso BS-Lasso Liso MS-Lasso
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Lasso and Adaptive Lasso The proportion of the method selects each com-

ponent in the true model, together with the average number of true positives

and false positives.

Selection Methods g1 g2 g3 g4 TP FP

MS-Lasso 1.00 0.89 1.00 1.00 3.89 (0.31) 17.72 (9.84)

Adaptive MS-Lasso 0.98 0.87 1.00 1.00 3.85 (0.41) 2.97 (3.05)

Lasso 0.85 0.72 1.00 1.00 3.57 (0.62) 25.01(11.85)

Adaptive Lasso 0.81 0.68 1.00 1.00 3.49 (0.67) 18.40 (7.72)

Adaptive Liso 0.39 0.98 1.00 1.00 3.37 (0.51) 5.81 (2.46)

BS-Lasso 0.00 0.04 0.23 0.93 1.20 (0.62) 1.09 (1.87)

The MS-Lasso is able to select all four components in the true model in

most of the simulation runs. The adaptive step, reduces the number of false

posives.

Bone Mineral Data Example

To illustrate proposed method, use Bone Mineral data (Reppe et al., 2010)

and considered 84 women who had a trans-iliacal bone biopsy. Study the

relationship between the bone mineral density and expression of the 2000

genes.
Estimated functions in Bone Mineral Data
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