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Introduction 
•  Large data sets in which individual samples are 

represented by shapes (curves and surfaces) are becoming 
more and more common in medical studies.  

•  We describe several recent studies, using the tools that 
were previously described.  

•  All these methods start with a dataset of segmented 
regions of interest. 

•  Most address the standard “case vs. controls” statistical 
problem. 
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Compute a shape that is central to the 
dataset (template)… 
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… Register each shape to the template 
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Control Shape Evolution using 
Velocity Vectors 
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Optimal control from Template to 
Target 

t	  =	  0	   t	  =	  1	  

Optimize over velocity vectors (control) 
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COMPUTING AVERAGES 
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Karcher Means 
•  On a Riemannian manifold      , a Karcher mean of a set          

            is a minimizer of 

•  Not always unique, but the minimized function is convex 
if all       ‘s are close enough to each other.  
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Relaxed Version 
•  Minimize 

 
 
 
with respect to q and                , where       measures the 
discrepancy between                     and      is a 
hyperparameter. 

•  Can be formalized as a multi-step optimal control 
problem. 
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Template estimation: two-level 
Optimal Control 

Hypertemplate	  

Template	  
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Application: Cardiac Heart Template 

•  Dataset: 27 MRI scans of normal hearts. 
•  Hypertemplate: segmented CT scan. 
•  Cardiac MRIs have coarse resolution (8mm) along the 

long axis. They are segmented in a collection of planar 
curves. 

•  The hypertemplate is a finely triangulated surface. 
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End-diastole heart template (I) 

Single subject sequence: yellow curves are observed, then registered to a surface 
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End-diastole heart template (II) 

Average over 27 subjects 
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Visualizing Geometric Strain on 
Template 
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Cardiac MRI Displacement 
Covariance Map (ED) 

Anterior view Posterior view 
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PCA 
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Working in the tangent plane: PCA 
•  Once a template is estimated, exponential coordinates can 

be computed for all shapes in the training set. 

ExponenIal	  map	  
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PCA in the tangent space 
•  Let                       be the dataset.  
•  Call    the average shape (or template). 
•  Compute minimizing geodesics between     and each      . 
•  If        is the derivative at time 0 of the geodesic, then  
 
•  Use                    as a new dataset. 
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PCA in the co-tangent space 
•  For objects represented as point sets, using the optimal 

control approach, each        can be replaced by a co-state  
       ,  which is more convenient.   

•  The metric used for PCA should be inherited by the 
Riemannian structure, namely 
 
 
 
(rather than                       ). Here,                   are 3D  
 
points that form the template. 

  d ( j )

  p
( j )

  
p( i) , p( j )

q
= ( pk

( i) )T KV (qk ,ql ) pl
( j )

k ,l=1

N

∑

  
( pk

( i) )T pk
( j )

k=1

N

∑   (q1,…,qN )

Geilo,	  January	  2014	   Laurent	  Younes	   76	  



PCA in the co-tangent space 
•  PCA now finds a basis                  , with                           

that is orthonormal for          and minimizes 
 
 
 
where      is the orthonormal projection on  

•  Each decomposition                   represents a new shape 
via the exponential map.      

  (e
1,…,em )   e

j = (e1
j ,…,eN

j )

  
⋅,⋅

q

  
p( j ) −πm( p( j ) )

q

2

j=1

n

∑

 πm   span(e1,…,em )

  
p = α se

s

s=1

m

∑

Geilo,	  January	  2014	   Laurent	  Younes	   77	  



Example: BIOCARD dataset projected 
on first two principal components 

Daniel	  Tward	  
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Application: Active Shape Models  
•  PCA provides a prior distribution on shapes around a 

given template, that can be used to drive or regularize 
segmentation algorithms. 

•  This leads to what we call GCDAS (for geodesically-
controlled diffeomorphic active shapes). 

•  They solve, for some function U : 
 
 
 
with                       and                   are the eigenvalues of 
the PCA decomposition. 
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Example: Landmark extrapolation 
•  Assume that landmarks have been placed on a target 

shape. 
•  The goal is to find a deformation that moves homologous 

landmarks on the template towards their targets. 
•  Using GC-DAS, the deformation is also constrained by 

the prior. 

Geilo,	  January	  2014	   Laurent	  Younes	   80	  



Landmark Matching  
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Without GC-DAS 

With GC-DAS 



DIFFEOMORPHOMETRY 
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Shape Markers 
•  In addition to the exponential chart coordinates (p), other 

shape descriptors can be used in statistical studies. 
•  They can be derived from the fact that computing 

geodesics also provides a diffeomorphic registration of 
the target shape to the template. 

•  So, from                      , one computes mappings  
                      which are such that                        . 

•  (Diffeo)morphometric markers are based on these 
diffeomorphisms.   

   q(1) ,…,q(n)( )
  ϕ

(1) ,…,ϕ (n)( )    q
(k ) !ϕ (k ) (q )
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Examples of Shape Markers 
•  The Jacobian determinant is                         where        is 

the matrix of partial derivatives of φ. 
•  It measures infinitesimal changes in volumes 

 
where       is a small neighborhood of  x. 

•  Directional changes can also be used. If            , 
                     measures the strain at x in the direction u. 

•  Eigenvector and eigenvalues of the strain tensor 
                                         can also be used                      

  J
ϕ = det(Dϕ )  Dϕ

   vol(ϕ(δv)) ! Jϕ (x)vol(δv)
 δv

  | u |= 1

  Dϕ(x)u − u
2

  (Dϕ(x)− I )T (Dϕ(x)− I )
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Case of Surfaces 
•  When comparing surfaces, the transformation of areas 

rather than volumes can more relevant.  
•  If S is a surface and          , define           so that  

 
where      is a small surface element around x.  

•  It is given by                          where N is the unit normal 
to S at x. 

•  It is easily computable from triangulated surfaces.  

 x ∈S   JS
ϕ (x)

   area(ϕ(δ s)) ! JS
ϕ (x)area(δ s)

 δ s

 JS
ϕ = Dϕ−T N
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Dimension Reduction and Aggregation 

•  Volumes can have millions of voxels, and surfaces 
thousands of vertices. 

•  Although data can be handled at this level, it is sometimes 
useful to reduce their dimension. 

•  PCA, applied to the shape markers, is always an option.  
•  On surfaces, one can also use geometrically induced 

orthonormal families. 
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Laplace-Beltrami Eigenvectors 
•  If S is a surface, the Laplace-Beltrami (LB) operator Δ is 

defined by the identity 
 
 
where      is the gradient operator on S, i.e., the usual 
gradient projected on the tangent plane. 

•  It is a non-positive symmetric operator. Its eigenvectors 
form an orthonormal basis of           , called surface 
harmonics.  
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Examples 
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Spectral Segmentation 
•  One can also reduce dimension by averaging over sub-regions.  
•  These regions can sometimes be given a priori, as a segmented 

atlas. 
•  One can also use geometrically-induced regions, such as those 

obtained via spectral segmentation using LB eigenvectors. 
•  These methods attach to each point in the surface the value of 

the first m eigenvectors of the LB operator at this point. 
•  This is followed by standard clustering (e.g., K-means), based 

on this m-dimensional feature.  
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Illustration 
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APPLICATION: PREDICT-HD 
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Predict HD 
•  Huntington Disease (HD) is caused by a CAG repeat expansion in the 

huntingtin gene. Individuals with longer repeats develop HD with earlier 
ages of onset. Predictors highly correlated to the time to onset can be 
developed (combining age and CAG repeat length). 

•  HD involves preferential atrophy of the  striatal complex (caudate, 
putamen, nucleus accumbens) and related subcortical nuclei. 

•  Dataset with 80 subjects belonging to four groups: controls, low, mid and 
high (all prodromal subjects) with labels based on CAG repeat and age 
(which are combined in a CAP score). 

•  For each subject, segmented substructures were computed (in the form of 
binary volumes), for left and right accumbens, caudate, globus pallidus, 
hippocampus, putamen and thalamus. 

•  Goal: relate shape of structures to groups. 
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Population Statistics 
•  80 subjects in 4 groups 
•  MRI scan for each subject, with segmented accumbens, 

caudate, globus pallidus, hippocampus, putamen and 
thalamus. !

! Controls! Low! Mid! High! Total!
Female/Male! 10/10! 10/6! 11/7! 17/9! 48/32!
Average!age!
(standard!
deviation)!

42.8!(10.6)! 36.7!(8.9)! 41.7!(9.1)! 43.3!(8.7)! 41.5!(9.5)!
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Population Templates 
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Shape Markers: surface Jacobian 
determinants (examples) 

Geilo,	  January	  2014	   Laurent	  Younes	   95	  



Statistical Model 
•  Let        denote the kth coordinate of the deformation 

marker for subject j. 
•  Use covariates for gender, age and intracranial volume. 
•  Let        be the residual of the linear regression of       by 

the covariates. 
•  Let        ,        and        denote binary variables for the low, 

mid and high CAP score groups (all null for controls) 

 Jk
j

  glow   gmid   ghigh

 yk  Jk
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Three linear models models with null 
•  Low only: 

 
 

•  Mid and Low: 
 
 
 

•  All groups 
 
 
 

  

yk
j = bk ,0 + bk ,low glow

j + nk
j

H0 (k) : bk ,low = 0

  

yk
j = bk ,0 + bk ,low glow

j + bk ,mid gmid
j + nk

j

H0 (k) : bk ,low = bk ,mid = 0

  

yk
j = bk ,0 + bk ,low glow

j + bk ,mid gmid
j + bk ,highghigh

j + nk
j

H0 (k) : bk ,low = bk ,mid = bk ,high = 0
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P values (group comparisons, volumes) 

Substructure Low Mid High 
Accumbens (Left) 0.01 0.09 0.025 
Accumbens (Right) 0.11 0.40 0.18 
Caudate (Left) 0.62 0.039 < 0.0001 
Caudate (Right) 0.55 0.10 < 0.0001 
Globus Pallidus (Left) 0.05 0.0003 < 0.0001 
Globus Pallidus (Right) 0.002 0.0003 < 0.0001 
Hippocampus (Left) 0.77 0.82 0.58 
Hippocampus (Right) 0.32 0.62 0.30 
Putamen (Left) 0.57 0.0007 < 0.0001 
Putamen (Right) 0.41 0.037 < 0.0001 
Thalamus (Left) 0.60 0.51 0.23 
Thalamus (Right) 0.79 0.90 0.67 
!

Geilo,	  January	  2014	   Laurent	  Younes	   98	  



P values (group comparisons, shape) 

Substructure Low Mid High 
Accumbens (Left) 0.44 0.25 0.064 
Accumbens (Right) 0.37 0.30 0.035 
Caudate (Left) 0.91 0.025 < 0.0001 
Caudate (Right) 0.08 0.14 < 0.0001 
Globus Pallidus (Left) 0.02 0.001 < 0.0001 
Globus Pallidus (Right) 0.0042 0.014 < 0.0001 
Hippocampus (Left) 0.18 0.23 0.18 
Hippocampus (Right) 0.64 0.74 0.23 
Putamen (Left) 0.33 <0.0001 < 0.0001 
Putamen (Right) 0.011 0.018 < 0.0001 
Thalamus (Left) 0.13 0.59 0.17 
Thalamus (Right) 0.50 0.66 0.04 
!
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Atrophy maps: Caudate 

LeJ/Right	  caudate,	  high	  CAP	  group	  
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Putamen (left/right, high CAP) 
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Left Globus 
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Right globus 
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Caudate (rank based) 
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Putamen (Rank based) 
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Globus (rank-based) 
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BIOCARD 
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Longitudinal Example: BIOCARD 
(NIH, JHU) 

•  1995-2005: Alzheimer’s disease longitudinal study at 
NIH 

•  Subjects: around 350 healthy subjects, with a large 
proportion at risk of dementia. 

•  Study was extended in 2008 (M. Albert) with updated 
diagnoses (2010) with more subjects converting to the 
disease. 

•  MRI data was acquired multiple times for each subject 
during the first study (1 to six scans per subject). 

•  Goal: identify shape structures that are primarily affected. 
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BIOCARD (continued) 
•  All subjects were “normal” at the beginning of the study 

(1995). 
•  At the end of the first study, a small number (15) were 

diagnosed with mild cognitive impairment (MCI) or 
dementia (DAT). 

•  Recent diagnoses in the extended study (2010) reveled 51 
patients that converted from controls to cognitively 
impaired. 
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General model 
•  Variables: 

–         : kth shape marker for subject j from scan q 
(corrected for gender and intracranial volume). 

–         : age of subject j at scan q. 
–         : group of subject j. 

•  Model: 
 

•  Null hypothesis: 
 

  yk
j ,q

  t j ,q

 g
j

  yk
j ,q = ak + ′akt

j ,q + (bk + β ′bkt
j ,q )g j + nk

j ,q

  bk = ′bk = 0
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Noise model (random effects) 
•  The noise is modeled as 

 
 
with                          and                          .  

•  Parameters                                               and r are 
estimated by maximum likelihood. 

•  (Note: r is chosen independent from k for simplicity and 
computational efficiency). 

 

  nk
j ,q = ε k

j +ηk
j ,q

   ε k
j ~ N (0,rsk

2 )    ηk
j ,q ~ N (0,sk

2 )

  (ak , ′ak ,bk , ′bk ,sk
2 ,k = 1,…,d)
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Tests 
•  The test statistic is the log-likelihood difference between 

the null hypothesis                             and the general 
hypothesis     : 

 
•  The log-likelihood in each case is given by  

 
 
where         is the total number of subjects and        is the 
number of observations (scans) for subject j.  

  H0
k : bk = b 'k = 0

  −2Lk = cst + Nsubj log ŝk
2 +∑ j log(r̂N j +1)

  Nsubj  N
j

  Sk = LH1

k − LH0

k  H1
k
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Tests 
•  A global statistic can then be defined by  

•  P-values are computed using permutation sampling 
(scramble groups…) run until a 10% accuracy is reached 
with high probability. 

•  Variables     for which      is larger that the 95 percentile of 
the values of     observed via permutations are considered 
as significant at 5% family-wise error rate. 

  S
* = max k S k

 S k

  S* yk
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Significant P-values 
controls vs. preclinicals 

•  Strong significance for ERC 

 Structures 
Examined 

Vertex 
Controls vs. 
Preclinical 
AD 

Laplace 
Controls vs.  
Preclinical 
AD 

Volume 
Controls vs.  
Preclinical 
AD 

Amygdala (L) 0.17 0.13 0.0086 
Hippocampus (L) 0.022 0.33 0.073 

ERC (L) <0.0001 0.0001 0.51 
Amygdala (R) 0.031 0.029 0.0043 

Hippocampus (R) 0.025 0.08 0.79 
ERC (R) 0.0067 0.0003 0.17 
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Detected Regions 
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ADNI (CASE-CONTROL) 
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Description of the Study 
•  The ADNI study was launched in 2003 by a conglomerate of 

federal agencies, private pharmaceutical companies and non-
profit organizations. 

•  The primary goal of ADNI has been to test whether serial 
magnetic resonance imaging (MRI), positron emission 
tomography (PET), other biological markers, and clinical and 
neuropsychological assessment can be combined to measure 
the progression of mild cognitive impairment (MCI) and early 
Alzheimer’s disease (AD).  

•  Included subjects: 210 HC, 369 with MCI, and 175 with AD.  
•  MCI subgroups: MCI-stable reverted to normal cognitive 

status or remained stable (205); and MCI-AD converted to AD 
(151 subjects), after one year. (13 reverted to control and were 
excluded). 
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Description 
•  7 subcortical structures were considered: amygdala, 

hippocampus, caudate, putamen, thalamus, globus 
pallidus and ventricle (all left and right). 
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P value tables 

  HC VS. AD HC VS. MCI MCI VS. AD 

  volume 
analysis 

shape 
analysis 

volume 
analysis 

shape 
analysis 

volume 
analysis 

shape 
analysis 

Left-amyg p < 1E-4 p < 1E-4 p < 1E-4 p < 1.4E-4 p < 1E-4 p < 1E-4 
Right-amyg p < 1E-4 p < 1E-4 p < 1E-4   p < 1E-4 p < 1E-4 p < 1E-4 

Left-hipp p < 1E-4 p < 1E-4 p < 1E-4   p < 1E-4 p < 1E-4 p < 1E-4 
Right-hipp p < 1E-4 p < 1E-4 p < 1E-4 p < 2.6E-4 p < 1E-4 p < 1E-4 
Left-vent p < 1E-4 p < 1E-4 p < 0.04    p < 1E-4 p < 1E-4 p < 1E-4 

Right-vent p < 1E-4 p < 1E-4 p < 5E-3  p < 3.7E-4 p < 1E-4 p < 1E-4 
Left-caud p < 0.46 p < 1E-4 p < 0.52    p < 0.07 p < 0.15    p < 3.7E-4 

Right-caud p < 0.89 p < 1E-4 p < 0.19    p < 0.01 p < 0.17     p < 0.12 
Left-puta p < 0.02 p < 1E-4 p < 0.47    p < 1E-4 p < 0.05    p < 5.9E-4 

Right-puta p < 0.04 p < 1E-4 p < 0.95   p < 2.6E-4 p < 0.02    p < 5.6E-3 
Left-thal p < 0.07 p < 1E-4 p < 0.96   p < 1.2E-4 p < 0.09 p < 4E-4 

Right-thal p < 0.05 p < 1E-4 p < 0.67    p < 1E-4      p < 0.1     p <1E-3 
Left-pall p < 0.08 p < 1E-4 p < 0.27    p < 0.21 p < 5E-3    p < 1.3E-3 

Right-pall p < 0.45 p < 1E-4 p < 0.12    p < 2E-3 p < 0.02     p < 0.02 

!
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Amygdala 
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Hippocampus 
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Ventricle 
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Basal Ganglia 
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MCI stable vs. MCI HD 

Geilo,	  January	  2014	   Laurent	  Younes	   124	  



REMARK ON LONGITUDINAL 
DATA ON MANIFOLDS… 
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Description 
•  Assume that subject j has     observations over time. 
•  Define the first observation as the baseline. 
•  Compute a template shape based on baselines. 
•  Goal: represent all shapes in a template-centered 

coordinate system  

 nj
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First Method 
•  Compute (like before) coordinates                              for 

subject j by computing geodesics between the template 
and all other shapes  

  y
( j ,q) ,q = 1,…,nj
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Second Method 
•  Compute template centered coordinates for baselines and 

baseline-centered coordinates for follow-ups 
•  Transport baseline-to-follow-up shape information back 

to the template  
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Exponential Charts and Transport 
•  Let T be the template, B a baseline, F a follow-up 
•  B has exponential coordinates at T, F has exponential 

coordinates at B, i.e. 

•  Goal: transport the representation Δ from B to T, resulting 
in a new representation     and a new shape 

•  Linear analog:   

  B = expT (D), F = expB (Δ)

  F ' = expT ( ′Δ )′Δ

  B = T + D; F = B + Δ; ′Δ = Δ; F ' = T + ′Δ
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Parallel Transport 
•  In nonlinear spaces, there is, in general, no canonical way 

for transporting coordinate systems. 
•  On Riemannian manifolds, this can be done along a curve 

using parallel transport 
–  The transformation between coordinates is isometric 
–  It generally depends on the chosen curve 
–  Its computation requires solving a somewhat complicated 

dynamical system 
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Parallel Transport for Point Sets… 

  
K

b=1

N

∑ (xa ,xb )(2∂t hb + (
c=1

N

∑ rb
T hc + hb

T rc )∇1K (xb ,xc )) =

  
∇1

b=1

n

∑ K (xa ,xb )T varb + ∇1
b=1

n

∑ K (xb ,xa )T vbrb

  
− ∇1
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HYPERTROPHIC 
CARDIOMYOPATHY 
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Surface to curves LDDMM 
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Population statistics 

PopulaIon	   N	  (F/M)	   LVEF	  (%)	   EDLLV(ml)	   ESLLV(ml)	   LVM	  (g)	   Mean	  age	  

HCM	   9	  (5/4)	   67.8±7.9	   130.0±45.9	   42.6±19.8	   147.0±19.8	   45±12	  

HHD	   11	  (2-‐9)	   56.3±7.3	   168.2±61.6	   76.7±39.4	   136.5±39.4	   53±10	  

P-‐value	   N/A	   0.008	   0.18	   0.08	   0.94	   0.18	  
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End-Systole Shape Analysis (cross-
sectional) 

Radial	  

FDR	  

FWER	  
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ES-ED transformation (longitudinal) 

CircumferenIal	  

FDR	  

FWER	  
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RISK PREDICTION: LDA ON 
ADNI 
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Preprocessing 
•  7x2 brain structures are analyzed (baselines only). 
•  For each of them, compute a template, and exponential 

coordinates at the template. 
•  Reduce dimension using group-independent PCA. 
•  Groups: 210 HC, 369 with MCI, and 175 with AD.  
•  MCI subgroups: 205 MCI-stable, 151 MCI-AD (13 

“reverters”). 
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Results 
•  Shape PC information is more discriminating than volume 
•  Hippocampus is the most discriminant. 
•  The optimal LDA classifier combines the hippocampus, 

amygdala and lateral ventricle.  
•  In the double loop cross-validation, hippocampus was selected 

88% of the time, amygdala 83%, ventricle 71%, thalamus 
45%, caudate 36%, putamen 37% and pallidum 26%. 

•  The leave-one-out cross-validation procedure yields correct 
classification rates: 88% for HC, 86% for AD and 86% for the 
two groups together. 

•  Using volumes only: 76% for HC, 75% for AD group, and 
75% for the two groups. 
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More on Diffeomorphic Shape 
Analysis 

•  Shape deformation analysis from the optimal control viewpoint: S 
Arguillere, E Trélat, A Trouvé, L Younes arXiv preprint1401.0661 
2014 

•  Diffeomorphometry and geodesic positioning systems for human 
anatomy: MI Miller, L Younes, A Trouvé Technology, 1-9 2013 

•  Spaces and manifolds of shapes in computer vision: An overview: L 
Younes, Image and Vision Computing 30 (6), 389-397 

•  Shape Spaces: A Trouvé, L Younes, Handbook of Mathematical 
Methods in Imaging, 1309-1362  2011 

•  Diffeomorphic active contours: F Arrate, JT Ratnanather, L Younes, 
SIAM journal on imaging sciences 3 (2), 176-198, 2010 

•  Transport of relational structures in groups of diffeomorphisms: L 
Younes, A Qiu, RL Winslow, MI Miller, Journal of mathematical 
imaging and vision 32 (1), 41-56 

•  Shapes and diffeomorphisms: L Younes, Springer, 2010 
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