

Norwegian Winter School – Geilo

Object Oriented Data Analysis

J. S. Marron

Dept. of Statistics and Operations Research, University of North Carolina

January 16, 2014

An Aside on Current "Fashion"

Big Data

• Isn't It Just Statistics?

An Aside on Current "Fashion"

Big Data

- Isn't It Just Statistics?
- Yes, But We Need to Remind Folks
- Maybe <u>Bigger</u> Challenge:

What is the "atom" of a statistical analysis?

- 1st Course: Numbers
- Multivariate Analysis Course : Vectors
- Functional Data Analysis: Curves
- More generally: Data Objects

UNC, Stat & OR

Original Thought: OODA = Mathematical Framework

(containing wide variety of interesting cases)

UNC, Stat & OR

Original Thought: OODA = Mathematical Framework

Current View: OODA = Focal Point

UNC, Stat & OR

Original Thought: OODA = Mathematical Framework

Current View: OODA = Focal Point

{For discussions (interdisciplinary)
about tackling serious analyses}

UNC, Stat & OR

Original Thought: OODA = Mathematical Framework

Current View: OODA = Focal Point

What should be the Data Objects?

Functional Data Analysis

Curves as Data Objects

Important Duality:

Curve Space \leftrightarrow Point Cloud Space

Illustrate with Travis Gaydos Graphics

2 dim'al curves (easy to visualize)

Functional Data Analysis

Curves as Data Objects

Important Duality Concept:

- Curve Space \leftrightarrow Point Cloud Space
- (= Object Space) (= Feature Space)

Illustrate with Travis Gaydos Graphics

2 dim'al curves (easy to visualize)

Functional Data Analysis, Toy EG I

Functional Data Analysis, Toy EG II

Functional Data Analysis, Toy EG III

Functional Data Analysis, Toy EG IV

Functional Data Analysis, Toy EG V

Functional Data Analysis, Toy EG VI

Functional Data Analysis, Toy EG VII

Functional Data Analysis, Toy EG VIII

Functional Data Analysis, Toy EG IX

Functional Data Analysis, Toy EG X

Functional Data Analysis, 10-d Toy EG 1

Functional Data Analysis, 10-d Toy EG 1

Functional Data Analysis, 50-d Toy EG 2

Functional Data Analysis, 50-d Toy EG 2

UNC, Stat & OR

More Than Dimensionality Reduction

UNC, Stat & OR

More Than *Dimensionality Reduction*:

- Visualization
 - Relationships Between Objects (Scores)
 - Drivers of Relationships (Loadings)

UNC, Stat & OR

More Than *Dimensionality Reduction*:

- <u>Visualization</u>
 - Relationships Between Objects (Scores)
 - Drivers of Relationships (Loadings)
- <u>Summarization</u>
 - Lower-d Representation
 - E.g. n << d

UNC, Stat & OR

More Than *Dimensionality Reduction*:

- <u>Visualization</u>
 - Relationships Between Objects (Scores)
 - Drivers of Relationships (Loadings)
- <u>Summarization</u>
 - Lower-d Representation
 - E.g. n << d
- Careful about Information Loss

Interesting Data Set:

- Mortality Data
- For Spanish Males (thus can relate to history)
- Each curve is a single year
- x coordinate is age
- Mortality = # died / total # (for each age)
- Study on log scale

Another Data Object Choice

Conventional Coloring:

UNC, Stat & OR

Rotate Through (7) Colors

Hard to See Time Structure

UNC, Stat & OR 🗖

Mean Residual

Object Space View of Shifting Data To Origin In Feature Space

Mortality Time Series

UNC, Stat & OR

Shows:

Main Age Effects in Mean, Not Variation About Mean

Mortality Time Series

Object Space View of Projections Onto PC1 Direction

Main Mode Of Variation: Constant Across Ages

Shows Major Improvement **Over Time**

UNC, Stat & OR

Spanish Males Mortality Curves, 1908–2002

Object Space View of Projections Onto PC2 Direction

Feature (Point Cloud) Space View

Connecting Lines Highlight Time Order

Good View of Historical Effects

UNC, Stat & OR

Interesting Real Data Example

- Genetics (Cancer Research)
- RNAseq (Next Gener'n Sequen'g)
- Deep look at "gene components"

Microarrays: Single number (per gene) RNAseq: Thousands of measurements

UNC, Stat & OR

Interesting Real Data Example

- Genetics (Cancer Research)
- RNAseq (Next Gener'n Sequen'g)
- Deep look at "gene components"

UNC, Stat & OR

Interesting Real Data Example

- Genetics (Cancer Research)
- RNAseq (Next Gener'n Sequen'g)
- Deep look at "gene components"
- Gene studied here: CDKN2A
- Goal: Study Alternate Splicing
- Sample Size, n = 180
- Dimension, $d = \sim 1700$

Chromosome 9 Gene = CDK2A, log₁₀ Transformed, Brushed by PCA

Important Points

- ✓ PCA found *Important Structure*
- In High Dimensional Data Analysis

What is the "atom" of a statistical analysis?

- 1st Course: Numbers
- Multivariate Analysis Course : Vectors
- Functional Data Analysis: Curves
- More generally: Data Objects

Object Oriented Data Analysis

Examples:

- Medical Image Analysis
 - Images as Data Objects?
 - Shape Representations as Objects
- Gene Expression (Microarrays RNAseq)
 - Just multivariate analysis?

Object Oriented Data Analysis

UNC, Stat & OR

Typical Goals:

- Understanding population variation
 - Visualization
 - Principal Component Analysis +
- Discrimination (a.k.a. Classification)
- "Vertical Integration" of Data Types

Major Statistical Challenge, I:

- High Dimension Low Sample Size (HDLSS)
- Dimension d >> sample size n
- "Multivariate Analysis" nearly useless
 - Can't "normalize the data"
- Land of Opportunity for Statisticians
 - Need for "creative statisticians"

Aside on Terminology

UNC, Stat & OR

Personal suggestion:

High Dimension Low Sample Size (HDLSS)

- Dimension: *d*
- Sample size *n*
- Versus: "Small n, large p"
- Why p? (parameters??? predictors???)
- Only because of statistical tradition...

Major Statistical Challenge, II:

- Data may live in *non-Euclidean space*
 - Lie Group / Symmet'c Spaces (manifold data)
 - Trees/Graphs as data objects
- Interesting Issues:
 - What is "the mean" (pop'n center)?
 - How do we quantify "pop'n variation"?

Statistics in Image Analysis, I

First Generation Problems:

- Denoising
- Segmentation
- Registration

(all about single images)

Statistics in Image Analysis, II

Second Generation Problems:

- Populations of Images
 - Understanding Population Variation
 - Discrimination (a.k.a. Classification)
- Complex Data Structures (& Spaces)
- HDLSS Statistics

UNC, Stat & OR

Why HDLSS (High Dim, Low Sample Size)?

Complex 3-d Objects Hard to Represent
Often need d = 100's of parameters

Complex 3-d Objects Costly to Segment
Often have n = 10's cases

Male Pelvis

- Bladder Prostate Rectum
- How do they move over time (days)?
- Critical to Radiation Treatment (cancer)
- Work with 3-d CT
- Very Challenging to Segment
 - Find boundary of each object?
 - Represent each Object?

Male Pelvis – Raw Data

Male Pelvis – Raw Data

UNC, Stat & OR

Bladder:

manual segmenta tion

Slice by slice

Reassembled

Male Pelvis – Raw Data

UNC, Stat & OR

Bladder:

Slices: Reassembled in 3d

How to represent?

Thanks: Ja-Yeon Jeong

- Landmarks (hard to find)
- Boundary Rep'ns (no correspondence)
- Medial representations
 - Find "skeleton"
 - Discretize as "atoms" called M-reps

3-d m-reps

UNC, Stat & OR

Bladder – Prostate – Rectum (multiple objects, J. Y. Jeong)

- Medial Atoms provide "skeleton"
- Implied Boundary from "spokes" → "surface"

3-d m-reps

M-rep model fitting

- Easy, when starting from *binary* (blue)
- But very expensive (30 40 minutes technician's time)
- Want *automatic approach*
- Challenging, because of poor contrast, noise, ...
- Need to borrow information across training sample
- Use Bayes approach: prior & likelihood → posterior
- ~Conjugate Gaussians, but there are issues:
 - Major HLDSS challenges
 - Manifold aspect of data

Illuminating Viewpoint

UNC, Stat & OR

Object Space $\leftarrow \rightarrow$ Feature Space

Focus here on collection of *data objects* Here conceptualize *population structure* via "point clouds"

UNC, Stat & OR

Major issue: m-reps live in $\Re^3 \times \Re^+ \times S^2 \times S^2$ (locations, radius and angles)

E.g. "average" of: $2^{\circ}, 3^{\circ}, 358^{\circ}, 359^{\circ} = ???$

UNC, Stat & OR

Major issue: m-reps live in $\Re^3 \times \Re^+ \times S^2 \times S^2$ (locations, radius and angles)

E.g. "average" of: $2^{\circ}, 3^{\circ}, 358^{\circ}, 359^{\circ} = ???$

$$\Sigma_i \theta_i / 4$$
 ?

UNC, Stat & OR

Major issue: m-reps live in $\Re^3 \times \Re^+ \times S^2 \times S^2$ (locations, radius and angles)

UNC, Stat & OR

Major issue: m-reps live in $\Re^3 \times \Re^+ \times S^2 \times S^2$ (locations, radius and angles)

UNC, Stat & OR

Major issue: m-reps live in $\Re^3 \times \Re^+ \times S^2 \times S^2$ (locations, radius and angles)

E.g. "average" of: $2^{\circ}, 3^{\circ}, 358^{\circ}, 359^{\circ} = ???$

Natural Data Structure is: Lie Groups ~ Symmetric spaces (smooth, curved manifolds)

Useful View of Manifold Data: Tangent Space

Figure 2.2: The Riemannian exponential map.

Thanks to P. T. Fletcher 79

Useful View of Manifold Data: Tangent Space

Figure 2.2: The Riemannian exponential map.

Useful View of Manifold Data: Tangent Space

At each point, ∃ Approximating Tangent Plane

Reason for terminology "mildly non Euclidean"

Figure 2.2: The Riemannian exponential map.

Figure 2.2: The Riemannian exponential map.

Thanks to P. T. Fletcher 82

Geodesic Mean

UNC, Stat & OR

For X_1, \dots, X_n in <u>any metric space</u>:

Mean = $argmin_x \sum_{i=1}^n d(x, X_i)^2$

(x = point with least square distance to data)

Geodesic Mean

UNC, Stat & OR

For X_1, \dots, X_n in <u>any metric space</u>:

Mean =
$$argmin_x \sum_{i=1}^n d(x, X_i)^2$$

(x = point with least square distance to data)

Geodesic Mean (on Manifolds): d = Geodesic Distance (Along Manifold Surface)

PCA on non-Euclidean spaces? (i.e. on Lie Groups / Symmetric Spaces)

T. Fletcher: Principal Geodesic Analysis

Idea: replace "linear summary of data" With "geodesic summary of data"...

Bladder – Prostate – Rectum, 1 person, 17 days PG 1 PG 2 PG 3 (analysis by Ja Yeon Jeong)

Bladder – Prostate – Rectum, 1 person, 17 days PG 1 PG 2 PG 3 (analysis by Ja Yeon Jeong)

Bladder – Prostate – Rectum, 1 person, 17 days PG 1 PG 2 PG 3 (analysis by Ja Yeon Jeong)

- Fletcher (Principal Geodesic Anal.)
 - Best fit of geodesic to data
 - Constrained to go through geodesic mean

- Fletcher (Principal Geodesic Anal.)
 - Best fit of geodesic to data
 - Constrained to go through geodesic mean

Counterexample:

Data on sphere, along equator

- Fletcher (Principal Geodesic Anal.)
 - Best fit of geodesic to data
 - Constrained to go through geodesic mean
- Huckemann, Hotz & Munk (Geod. PCA)
 - Best fit of <u>any</u> geodesic to data

- Fletcher (Principal Geodesic Anal.)
 - Best fit of geodesic to data
 - Constrained to go through geodesic mean
- Huckemann, Hotz & Munk (Geod. PCA)
 - Best fit of <u>any</u> geodesic to data

Counterexample: Data follows Tropic of Capricorn

(thanks to Ja-Yeon Jeong)

- Fletcher (Principal Geodesic Anal.)
 - Best fit of geodesic to data
 - Constrained to go through geodesic mean
- Huckemann, Hotz & Munk (Geod. PCA)
 - Best fit of <u>any</u> geodesic to data
- Jung, Foskey & Marron (Princ. Arc Anal.)
 - Best fit of <u>any circle</u> to data

(motivated by conformal maps)

PCA Extensions for Data on Manifolds

UNC, Stat & OR

Figure: Generalization of PCA on S^2 . Yellow: fitted small-circle, Green: great circle found by Geodesic PCA (Huckemann), Red: great circle found by PGA (Fletcher). μ (PC mean, or geodesic mean) is depicted as yellow (green, or red, respectively) diamond.)

Principal Arc Analysis

Jung, Foskey & Marron

- Best fit of <u>any circle</u> to data
- Can give better fit than geodesics
- Observed for simulated m-rep example

Currently popular approaches to PCA on S^k:

- Early: PCA on projections
- Fletcher: Geodesics through mean
- Huckemann, et al: Any Geodesic

New Approach (Jung, Dryden, Marron): Principal Nested Sphere Analysis

UNC, Stat & OR

Main Goal:

Extend Principal Arc Analysis (S² to S^k)

UNC, Stat & OR

Main Goal:

Extend Principal Arc Analysis (S² to S^k)

Jung, Dryden & Marron (2012)

UNC, Stat & OR

Top Down Nested (small) spheres

Digit 3 data: Principal variations of the shape

Princ. geodesics by PNS

Principal arcs by PNS

Main Goal:

Extend Principal Arc Analysis (S² to S^k)

Jung, Dryden & Marron (2012)

Impact on Segmentation:

- PGA Segmentation: used ~20 comp's
- PNS Segmentation: only need ~13
- Resulted in visually better fits to data

UNC, Stat & OR

Main Goal:

Extend Principal Arc Analysis (S² to S^k)

Jung, Dryden & Marron (2012)

Important Landmark: This Motivated Backwards PCA

UNC, Stat & OR

Replace usual forwards view of PCA

With a backwards approach to PCA

Terminology

Multiple linear regression:

$$Y_i = \mu + \alpha_1 x_{i1} + \alpha_2 x_{i2} + \dots + \alpha_k x_{ik}$$

Stepwise approaches:

- Forwards: Start small, iteratively add variables to model
- Backwards: Start with all, iteratively remove variables from model

Illust'n of PCA View: Recall Raw Data

"Point Cloud View" of Gene Expression

Gene 2 Expression Level

Illust'n of PCA View: PC1 Projections

Illust'n of PCA View: PC2 Projections

Projections on PC 2 Direction

Illust'n of PCA View: Projections on PC1,2 plane

Projections on PC 1 & PC 2 Directions

Principal Nested Spheres Analysis

UNC, Stat & OR

Replace usual forwards view of PCA

Data \rightarrow PC1 (1-d approx) \rightarrow PC2 (1-d approx of Data-PC1) \rightarrow PC1 U PC2 (2-d approx) \rightarrow PC1 U ... U PCr (r-d approx)

Principal Nested Spheres Analysis

UNC, Stat & OR

With a backwards approach to PCA

Data \rightarrow PC1 U ... U PCr (r-d approx) \rightarrow PC1 U ... U PC(r-1)

→ PC1 U PC2 (2-d approx) → PC1 (1-d approx)

UNC, Stat & OR

How generally applicable is *Backwards* approach to PCA?

UNC, Stat & OR

How generally applicable is *Backwards* approach to PCA?

Where is this already being done???

How generally applicable is *Backwards* approach to PCA?

Potential Application: Principal Curves

Hastie & Stuetzle, (1989) JASA

(Foundation of Manifold Learning)

1st Principal Curve

UNC, Stat & OR

1st Principal Curve

UNC, Stat & OR

1st Principal Curve

UNC, Stat & OR

How generally applicable is *Backwards* approach to PCA?

Potential Application: Principal Curves

Perceived Major Challenge: How to find <u>2nd Principal Curve</u>? *Backwards* approach???

How generally applicable is Backwards approach to PCA?

Another Potential Application:

Nonnegative Matrix Factorization

= PCA in Positive Orthant

Current Approach, Lee et al (1999): <u>Not Nested</u>, $(k = 3 \approx k = 4)$

How generally applicable is Backwards approach to PCA?

Another Potential Application:

Nonnegative Matrix Factorization

= PCA in Positive Orthant

(Backwards <u>Nested</u> Approach: Lingsong Zhang)

UNC, Stat & OR

How generally applicable is *Backwards* approach to PCA?

Another Potential Application: Trees as Data

(early days)

An Interesting Question

UNC, Stat & OR

How generally applicable is *Backwards* approach to PCA?

An Attractive Answer

How generally applicable is *Backwards* approach to PCA?

An Attractive Answer:

James Damon, UNC Mathematics

Geometry Singularity Theory

How generally applicable is *Backwards* approach to PCA?

An Attractive Answer: James Damon, UNC Mathematics

Key Idea: Express Backwards PCA as <u>Nested Series of Constraints</u>

UNC, Stat & OR

Define Nested Spaces via Constraints

Satisfying More Constraints \Rightarrow \Rightarrow Smaller Subspaces

UNC, Stat & OR

Define Nested Spaces via Constraints

E.g. SVD

(Singular Value Decomposition = = Not Mean Centered PCA)

(notationally very clean)

UNC, Stat & OR

Define Nested Spaces via Constraints

E.g. SVD

Have k Nested Subspaces: $S_1 \subseteq S_2 \subseteq \cdots \subseteq S_d$

UNC, Stat & OR

Define Nested Spaces via Constraints

UNC, Stat & OR

Define Nested Spaces via Constraints

E.g. SVD
$$S_k = \{x : x = \sum_{j=1}^k c_j \overrightarrow{u_j}\}$$

Now Define:

$$S_{k-1} = \{ x \in S_k : \langle x, \overrightarrow{u_k} \rangle = 0 \}$$

UNC, Stat & OR

Define Nested Spaces via Constraints

E.g. SVD
$$S_k = \{x : x = \sum_{j=1}^k c_j \overrightarrow{u_j}\}$$

Now Define:

$$S_{k-1} = \{x \in S_k : \langle x, \overline{u_k} \rangle = 0\}$$

Constraint Gives Nested Reduction of Dim'n

UNC, Stat & OR

Define Nested Spaces via Constraints

- Backwards PCA
 - **Reduce Using Affine Constraints**

UNC, Stat & OR

Define Nested Spaces via Constraints

- Backwards PCA
- Principal Nested Spheres

Use Affine Constraints (Planar Slices) In Ambient Space

UNC, Stat & OR

Define Nested Spaces via Constraints

- Backwards PCA
- Principal Nested Spheres
- Principal Surfaces

Spline Constraint Within Previous?

UNC, Stat & OR

Define Nested Spaces via Constraints

- Backwards PCA
- Principal Nested Spheres
- Principal Surfaces

Spline Constraint Within Previous?

{Been Done Already???}

UNC, Stat & OR

Define Nested Spaces via Constraints

- Backwards PCA
- Principal Nested Spheres
- Principal Surfaces
- Other Manifold Data Spaces

Sub-Manifold Constraints??

(Algebraic Geometry)

UNC, Stat & OR

Define Nested Spaces via Constraints

- Backwards PCA
- Principal Nested Spheres
- Principal Surfaces
- Other Manifold Data Spaces
- Tree Spaces

Suitable Constraints???

UNC, Stat & OR

Why does <u>Backwards</u> Work Better?

UNC, Stat & OR

Why does <u>Backwards</u> Work Better?

Natural to Sequentially Add Constraints

(I.e. Add Constraints, Using Information in Data)

UNC, Stat & OR

Why does <u>Backwards</u> Work Better?

Natural to Sequentially Add Constraints

Hard to Start With Complete Set, And Sequentially Remove

OODA is more than a "framework"

It Provides a Focal Point

Highlights Pivotal Choices:

What should be the Data Objects?

How should they be Represented?