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Abstract: Construct a prior distribution

for the number of parameters and the pa-

rameter values in higher order interaction

binary MRFs. Define an MCMC scheme

to simulate from the posterior.

Theory

Likelihood-MRF

Consider an MRF x on a lattice S =

{1, ..., nm}

p(x|θ) = c(θ) exp





∑

Λ∈Lm

U(xΛ, θ)



 ,

where we assume the set of all maximal cliques

Lm to be all k × l block of nodes on a torus. A

naive parametrization of the the potential func-

tion is

U(xΛ, θ) =
∑

y∈{0,1}k×l

θyI(xΛ = y) = θxΛ,

however this is grossly overparametrized. One

can established an identifiable parametrization

by constraining some of the θ parameters to be

equal. For instance when k = l = 2 the 16 con-

figurations of size 2× 2 can be defined to belong

to the configuration sets
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where each set is constrained to have the same

parameter φ0, ..., φ10. To obtain a fully identifi-

able parametrization we need one more restric-

tion, for instance a sum-to-zero constrain. The

number of configurations and free parameters for

some values of k × l is given below
k × l 2kl Nkl
1× 2 4 2
2× 2 16 10
2× 3 64 44
3× 3 512 400
3× 4 4096 3392
4× 4 65536 57856

where Nkl is the number of free parameters in

the identifiable parametrization.

Prior

Since φ0, ..., φNkl
are parameters on the

same scale we reduce the number of pa-

rameters by assuming a positive prior

probability for the event of groups of pa-

rameters to have exactly the same value.

In particular we let z = {(Ci, ϕi)}
r
i=1 where

C1, ..., Cr is a partition of the set of all configu-

ration sets, Ci 6= ∅, Ci∩Cj = ∅, C1∪ ...∪Cr =

{c0, ..., cNkl
}, and where ϕi is the common pa-

rameter value for set Ci. We let r denote the

number of groups, and define the prior

p(z) = p({C1, ..., Cr})p({ϕ1, ..., ϕr}|r),

where p({C1, ..., Cr} is defined by assuming r ∼
U(1, ..., Nkl + 1), and that given the number of

groups the possible groupings are uniformly dis-

tributed. For the group parameters {ϕ1, ..., ϕr}
we assume independently that ϕi ∼ N(0, σ2)

under the restriction
∑

iϕi = 0.

MCMC proposals

A reversible jump MCMC algorithm is defined

with proposals:

•Random walk for parameter values.

•Switching group membership.

•Creating/deleting groups.

Intractable normalizing constant

For MRF, exact calculations of the likelihood is

limited by the intractable normalizing constant

c(θ). We adopt an approximation to the MRF

using pseudo-Boolean functions (Tjelmeland and

Austad 2012), where the conditional distribution

of one variable given all previous variables is al-

lowed to depend on maximally ν previous vari-

ables.

Examples

We investigate two examples using 2×2 cliques,

i.e. k = l = 2.

Ising model

We generated one realization from the Ising

model

p(x|ω) =
1

c(ω)
exp


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i∼j

I(xi 6= xj)
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,

with ω = 0.4 to use as data. For this model it

is possible to calculate that the correct group-

ing with 2 × 2 cliques must be C0 = {c0, c10},
C1 = {c1, c2, c3, c6, c7, c8, c9}, and C2 = {c4, c5}.
The posterior estimate shows that this grouping

is in fact the posterior most probable grouping

with probability 0.94. The estimated probability

of two configuration sets to be grouped together

is shown below
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Ising model example: Estimated posterior probabilities for two
configuration sets to be grouped together. The true grouping is
shown in grey, and only probabilities larger than 0.05 are given.
Note the permutation done to the ordering of ci.

The parameter estimates for the posterior most

probable grouping is given below
Parameter Estimate 95 % cred.int. True value

ϕ0 0.385 (0.357,0.412) 0.400
ϕ1 -0.001 (-0.038,0.036) 0.000
ϕ2 -0.384 (-0.425,-0.320) -0.400

Red deer census count data

Red deer example: Presence/absence of red deer, altitude, and mires.

Four covariates, altitude, mires, northing,

and easting are included in this exam-

ple. The estimated posterior most proba-

ble grouping becomes C0 = {c0}, C1 =

{c1, c2, c3, c4, c5, c6, c7, c8, c9}, and C2 = {c10},
with probability 0.33. Over 2500 different group-

ings are visited in this example, but except for

the most probable grouping all other groupings

have a probability less than 0.05. The esti-

mated probability of two configuration sets to

be grouped together is shown below
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1 0.12 0.06

Red deer example: Estimated posterior probabilities for two
configuration sets to be grouped together. The true grouping is
shown in grey, and only probabilities larger than 0.05 are given.

The parameter estimate for the most probable

grouping is given below
Parameter Estimate 95 % cred.int.

ϕ0 1.323 (0.768,1.914)
ϕ1 0.489 (-0.212,1.161)
ϕ2 -1.812 (-3.338,-0.708)

Further work
Put a prior also on the clique types that is in-

cluded in the MRF, and thereby remove the k×l

assumption.


