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What pseudolikelihood?  
 

•Pseudolikelihood is an approximate inference 
technique originally introduced by Julian Besag 
in 1972 
•Replaces tricky likelihood function by a 
product over suitably chosen model 
components 
•Pseudolikelihood allows often use of logistic 
regression for parameter estimation 
•Pseudolikelihood has recently experienced a 
strong revival due to large-scale modeling 
needs in computational physics and 
computational biology 
 



Primer on logistic regression  
by David Strauss 

 



Pseudolikelihood with logistic regression  
for psychological Bradley-Terry model 

 



Pseudolikelihood for  
spatial dependence models 

 



Pseudolikelihood for  
Ising models 

 



Potts model for MSA  
Ekeberg et al. Phys Rev Lett, 2013 

 



Pseudolikelihood for Potts model for MSA  
Ekeberg et al. Phys Rev Lett, 2013 

 

L1 regularization not good for these models, that is why L2 is used here!  
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Markov network (MN)

I A MN is a probabilistic graphical model over a set of variables
(X1, . . . ,Xd ). (we only consider the discrete case)

I The dependence structure over the variables is represented by
an undirected graph G = (V ,E).

I The nodes in the graph, V = {1, . . . ,d }, represent the variables
and the edges, E ✓ {V ⇥V }, represent direct dependencies
among the variables.

I Absence of edges represents statements of conditional
independence, in particular

Xi ? XV\{MB(i)[i } | XMB(i)

where MB(i) = {j 2 V : {i , j } 2 E } is the Markov blanket of node i .
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Markov network (MN)

I A MN is a pair (G ,⁄G ) where ⁄G is a parameterization of a joint
distribution PG over (X1, . . . ,Xd )

I PG must satisfy the restrictions imposed by G , in particular:

Xi ? XV\{MB(i)[i } | XMB(i), P(Xi | XV\i ) = P(Xi | XMB(i))

I We assume that PG is positive.
I The joint distribution factorizes according to its maximal cliques

PG (XV ) =
1
Z

Ω

C2C(G)
ÊC (XC )

where ÊC : XC ! ë+ is a clique factor and Z =
¥

xV2XV PG (xV ) is
the partition function.

Johan Pensar: Marginal pseudo-likelihood
Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University



Marginal pseudo-likelihood: Introduction 5 | 19

Structure learning

I We assume we have a data set X containing n complete i.i.d.
joint observations xk = (xk ,1, . . . ,xk ,d ) generated from ⁄G ⇤ .

I The aim is to discover the graph structure G ⇤ from the set of all
possible graph structures G.

I Structure learning is basically model class learning.
I Reasons for structure learning:

. Step in model learning - Learn distribution given the graph.

. Knowledge discovery - The structure is a goal in itself.

I Structure learning methods can roughly be divided into two
categories:

. Constraint-based - Independence tests.

. Score-based - Optimization problem.
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The Bayesian approach

I We choose the graph with the highest posterior probability given
the data:

p(G | X) = p(X | G) · p(G)

p(X)

I Since p(X) is a normalizing constant, the problem can be
formulated as

argmax
G2G

p(X | G) · p(G).

I The key term of the Bayesian score is the marginal likelihood
which is evaluated according to

p(X | G) =

Z

⁄2 G

p(X | ⁄,G) · f(⁄ | G)d⁄.

I The marginal likelihood is hard to evaluate for MNs.
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The pseudo-likelihood function

I The pseudo-likelihood (Besag, 1975) is given by

p̂(X | ⁄) =
dΩ

j=1

p(Xj | XV\j ,⁄).

I Given a graph, the local Markov property allows us to simplify
the pseudo-likelihood as

p̂(X | ⁄,G) =
dΩ

j=1

p(Xj | XMB(j),⁄) =
dΩ

j=1

qjΩ

l=1

rjΩ

i=1

⁄
nijl
ijl .

I The marginal pseudo-likelihood (MPL) is evaluated according to

p̂(X | G) =

Z

⁄2 G

p̂(X | ⁄,G) · f(⁄ | G)d⁄.
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Marginal pseudo-likelihood

I We assume global and local independence among the
parameters (see parameter independence assumption for
Bayesian networks, Heckerman et al., 1995).

I This allows us to factorize the parameter prior distribution and
solve the MPL analytically:

p̂(X | G) =
dΩ

j=1

qjΩ

l=1

»(”jl )

»(njl +”jl )

rjΩ

i=1

»(nijl +”ijl )

»(”ijl )

I The MPL can in fact be considered the marginal likelihood for a
bi-directional dependency network (Heckerman et al., 2001).
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Number of possible graphs, |G|

d |G|= 2(
d
2)

2 2
4 64
8 268435456
16 1.32 . . . ·1036
32 2.04 . . . ·10149
...

...

Johan Pensar: Marginal pseudo-likelihood
Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University



Marginal pseudo-likelihood: Search algorithm 10 | 19

The direct approach

argmax
G2G

p̂(X | G) ( ·p(G) )

I We assume a uniform prior p(G) = 1/ |G|.
I The variable-wise factorization

p̂(X | G) =
dΩ

j=1

p(Xj | XMB(j))

makes the MPL a viable candidate for search algorithms based
on local changes.
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The direct approach

argmax
G2G

p̂(X | G)

I Two graphs G1 and G2 are compared by Bayes pseudo-factor

K(G1;G2) =
p̂(X | G1)

p̂(X | G2)
.

I If we assume a single edge di↵erence {i , j } between G1 and G2,
then

K(G1;G2) =
p(Xi | XMB1(i))

p(Xi | XMB2(i))
·
p(Xj | XMB1(j))

p(Xj | XMB2(j))
.
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The divide-and-conquer approach

I By denoting MB(G) = {MB(1), . . . ,MB(d)}, we reformulate the
original problem:

argmax
G2G

p̂(X | G)

,

argmax
MB(G)2⇥j2VP (V\j)

dΩ

j=1

p(Xj | XMB(j))

subject to i 2MB(j)) j 2MB(i) for all i , j 2 V
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The divide-and-conquer approach

I Relaxed version of the reformulated problem:

argmax
MB(G)2⇥j2VP (V\j)

dΩ

j=1

p(Xj | XMB(j))

I We now have d independent subproblems:

argmax
MB(j)✓V\j

p(Xj | XMB(j)) for j = 1, . . . ,d .

I Independent problems - Parallel solving!
I However, inconsistent solutions...
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Forming a MN structure from inconsistent Markov blankets

I Solutions to the relaxed problem are in general inconsistent in
the sense that i 2MB(j) but j <MB(i).

I Post-process the solution to satisfy the structure of a MN.
I Simple approaches:

EAND = {{i , j } 2 {V ⇥V } : i 2MB(j) AND j 2MB(i)}
EOR = {{i , j } 2 {V ⇥V } : i 2MB(j) OR j 2MB(i)}

I A more elaborate approach:

EHC = argmax
E✓EOR

p̂(X | G)

i.e. we solve the original problem w.r.t the reduced model space
{G 2 G : E ✓ EOR } ✓ G.
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Forming a MN structure from inconsistent Markov blankets
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Forming a MN structure from inconsistent Markov blankets
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Forming a MN structure from inconsistent Markov blankets
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Forming a MN structure from inconsistent Markov blankets

Johan Pensar: Marginal pseudo-likelihood
Center of Excellence in Optimization and Systems Engineering at Åbo Akademi University



Marginal pseudo-likelihood: Example 16 | 19

Comparative study of proposed methods

I We compare MPL-AND, -OR and -HC.
I All methods use the same initial Markov blanket discovery

phase.
I We generate data from synthetic models and compare the

identified structures to the true one.
I The quality of the identified structures are assessed by the

Hamming distance (# False positives + # False negatives).
I All results were averaged over 10 distributions and 10 samples

per distribution) 100 samples.
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Generating model

I Binary variables.
I Structure - formed by combining disconnected components:

I Distribution - for each C 2 C and xC 2 XC : Ê(xC ) is drawn from
U (0,1).
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a: d = 64 b: d = 128

c: d = 256 d: d = 512
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MPL rocks against most popular recent 
pseudolikelihood methods!  

 



Hope you had some good time! 
 


