
Polynomial chaos expansions part 2:
Practical implementation

Jonathan Feinberg and Simen Tennøe

Kalkulo AS

January 23, 2015

Relevant links

A very basic introduction to scientific Python programming:
http://hplgit.github.io/bumpy/doc/pub/sphinx-basics/index.html

Installation instructions:
https://github.com/hplgit/chaospy

http://hplgit.github.io/bumpy/doc/pub/sphinx-basics/index.html
https://github.com/hplgit/chaospy

Repetition of our model problem

We have a simple differential equation

du(x)

dx
= −au(x), u(0) = I

with the solution
u(x) = Ie−ax

with two random input variables:

a ∼ Uniform(0, 0.1), I ∼ Uniform(8, 10)

Want to compute E(u) and Var(u)

Repetition of the Chaospy code

dist_a = cp.Uniform(0, 0.1)

dist_I = cp.Uniform(8, 10)

dist = cp.J(a,I)

P = cp.orth_ttr(2, dist)

Polynomial chaos expansions have a very fast
convergence rate

The computational essence of polynomial chaos

With ûM(x ; q) =
∑N

n=0 cn(x)Pn(q) and orthogonal polynomials,
least squares minimization leads to a formula for cn:

cn(x) =
〈u,Pn〉Q
‖Pn‖2

Q

=
E(uPn)

E(P2
n)

=
1

E(P2
n)

∫
u(x ; q)Pn(q)fQ(q)dq ≈

ĉn(x) =
1

E(P2
n)

K∑
k=0

Pn(qk)u(x ; qk)f (qk)ωk

The numerical integral approximation is named pseudo-spectral
method.
qk quadrature nodes, ωk quadrature weights

Generating nodes and weights in Chaospy

dist = cp.Normal ()

nodes , weights = cp.generate_quadrature (2, dist , rule="G")

print nodes

[[-1.73205081 0. 1.73205081]]

print weights

[0.16666667 0.66666667 0.16666667]

Quadrature rule Π

Π0 •
Π1 • •
Π2 • • •

Multivariate combinations:

Π11 =
• •

• •

Π20 = • • • Π12 =
• •
• •
• •

K Total number of quadrature nodes

L Quadrature order along an axis

Generating multivariate integration rules in Chaospy

joint multivariate dist

dist = cp.J(cp.Uniform(), cp.Uniform ())

nodes , weights = cp.generate_quadrature ((1,2), \

dist , rule="G")

print nodes

[[0.211324 0.211324 0.211324 0.788675 0.788675 0.788675]

[0.112701 0.5 0.887298 0.112701 0.5 0.887298]]

print weights

[0.138888 0.222222 0.138889 0.138889 0.222222 0.138889]

A full implementation of pseudo-spectral projection
in Chaospy

dist_a = cp.Uniform(0, 0.1)

dist_I = cp.Uniform(8, 10)

dist = cp.J(a,I)

P = cp.orth_ttr(2, dist)

nodes , weights = cp.generate_quadrature (3, dist)

x = np.linspace(0, 10, 100)

samples_u = [u(x, *node) for node in nodes.T]

u_hat = cp.fit_quadrature(P, nodes , weights , samples_u)

mean , var = cp.E(u_hat , dist), cp.Var(u_hat , dist)

Number of quadrature nodes K grows exponentially
with dimension D

Smolyak sparse grids can drastically reduce the
number of nodes

Full tensor basis:

y2 y2x y2x2

y yx yx2

1 x x2

Smolyak sparse grid:

Π20 + Π11 + Π02 − Π10 − Π01

Example of a Smolyak node placement

Creating sparse grid nodes in Chaospy

nodes , weights =

cp.generate_quadrature(k, dist , rule="G",

sparse=True)

For low dimension D, tensor grid is best; for high
dimension D, sparse grid is more efficient

Different problems require different schemes

Key Description

”Gaussian” ”G” Optimal Gaussian quadrature.
”Legendre” ”E” Gauss-Legendre quadrature
”Clenshaw” ”C” Clenshaw-Curtis quadrature.
”Leja” “J” Leja quadrature.
”Genz” ”Z” Hermite Genz-Keizter 16 rule.
”Patterson” ”P” Gauss-Patterson quadrature rule.

Nested sparse grids use overlapping nodes to further
reduce the number of nodes

Clenshaw-Curtis:

Π0 •
Π1 • •
Π2 • • •

Nested Clenshaw-Curtis:

Π0 •
Π1 • • •
Π2 • • • • • • •

Nested smolyak sparse grid in practice

The number of overlapping nodes grows quickly

Mapping between polynomial order M and
quadrature order L

For nested Clenshaw-Curtis

Suggestion:
Linear growth rule: L = 2M − 1
Exponential growth rule: L = 2M − 1

Comparing three sparse grids

Nested sparse grid converges faster than a non
nested sparse grid

Gaussian qudrature approximates integrals with
weighting functions

∫
W (q)u(x , q)dq ≈

∑
k

ωku(x , qk)

We need weighting function W (q) to be the joint probability
distribution fQ(q)∫

fQ(q)u(x , q)dq ≈
∑
k

ωku(x , qk)

The point collocation method is alternative to the
pseudo-spectral method

1. Psuedo-spectral method:

1.1 Determine polynomial approximation of model by least squares
minimization in a space weighted with the probability
distribution

1.2 Approximate integrals in cn by quadrature rules

2. Point collocation method:

2.1 Determine polynomial approximation of model by least squares
minimization in a vector space as in regression (or
overdetermined matrix systems)

2.2 Need to choose a set of nodes (regression points)

The point collocation method: estimate cn using
linear regression

c =

c0(x)
...

cN(x)

 P =

P0(q0) · · · PN(q0)
...

...
P0(qK) · · · PN(qK)

 u =

u(x ; q0)
...

u(x , qK)

ĉ = argmin
c
‖Pc− u‖2

2

= (PTP)−1PTu

Collocation nodes should be placed where
probability is high

4 6 8 10 12 14 16

6

4

2

0

2

4

6

Code for least square minimization

def u(x, a, I):

return I*np.exp(-a*x)

dist_a = cp.Uniform(0, 0.1)

dist_I = cp.Uniform(8, 10)

dist = cp.J(dist_a , dist_I)

x = np.linspace(0, 10, 100)

P = cp.orth_ttr(3, dist)

nodes = dist.sample (2*len(P))

samples_u = [u(x, *node) for node in nodes.T]

u_hat = cp.fit_regression(P, nodes , samples_u)

Convergence using least square minimization

(Pseudo-)Random sampling schemes for choosing
nodes

(Pseudo-)Random sampling:
nodes = dist.sample(100)

Halton sampling
nodes = dist.sample(100, "H")

Latin Hypercube sampling:
nodes = dist.sample(100, "L")

Sobol sampling
nodes = dist.sample(100, "S")

Sampling schemes in Chaospy

Key Name Nested

K Korobov no
R (Pseudo-)Random no
L Latin hypercube no
S Sobol yes
H Halton yes
M Hammersley yes

C Clenshaw Curtis no
G Gaussian quadrature no
E Gauss-Legendre no

Convergence using different sampling schemes

What is best of pseudo-spectral and point
collocation method? It’s problem dependent!

Which method to choose for your problem

Pseudo-spectral Point collocation Monte Carlo

Efficiency Highest Very high Very low

Stability Low Medium Very high

Dimension-independence Lowest Low Highest

A surrogate model allows for computational cheap
statistical analysis

u_hat , c_hat = cp.fit_quadrature(

P, nodes , weights , solves , retall=True)

mean = cp.E(u_hat , dist)

var = cp.Var(u_hat , dist)

mean = c_hat [0]

norms2 = cp.E(P**2, dist)[1:]

c2 = c_hat [1:]**2

var = np.sum(c2*norms2)

samples_q = dist.sample (10**6)

samples_u = u_hat(* samples_q)

mean = np.mean(samples_u ,1)

var = np.var(samples_u ,1)

Modeling bloodflow requires sensitivity analysis

Want to have a sensitivity measure to judge the
impact of various input parameters

Variance based sensitivity:

STi
=

E(Var(u | Q \ Qi))

Var(u)

= 1− Var(E(u | Q \ Qi))

Var(u)

Chaospy:

sensitivity_Q = cp.Sens_t(u_hat, dist)

Manual code:

V = cp.Var(u_hat, dist)

sensetivity_a = 1-cp.Var(cp.E_cond(u_hat, [0,1], dist), dist)/V

sensetivity_I = 1-cp.Var(cp.E_cond(u_hat, [1,0], dist), dist)/V

Variance based sensitivity of our example

Various statistical metrics are easy to construct in
Chaospy

Some statistical metrics have analytical formulas, others can easily
be implemented by using Monte Carlo on the surrogate model:

samples_Q = dist.samples (10**5)

samples_u = P(* samples_Q)

p_10 = np.percentile(samples_u , 10, axis =0)

p_90 = np.percentile(samples_u , 90, axis =0)

Confidence interval

Summary

x = np.linspace(0, 10, 100)

def u(x, a, I):

return I*np.exp(-a*x)

dist_a = cp.Uniform(0, 0.1)

dist_I = cp.Uniform(8, 10)

dist = cp.J(dist_a , dist_I)

P = cp.orth_ttr(3, dist)

nodes , weights = cp.generate_quadrature (4, dist)

samples_u = [u(x, *node) for node in nodes.T]

u_hat= cp.fit_quadrature(P, nodes , weights , samples_u)

mean = cp.E(u_hat , dist)

var = cp.Var(u_hat , dist)

Thank you

A very basic introduction to scientific Python programming:
http://hplgit.github.io/bumpy/doc/pub/sphinx-basics/index.html

Installation instructions:
https://github.com/hplgit/chaospy

http://hplgit.github.io/bumpy/doc/pub/sphinx-basics/index.html
https://github.com/hplgit/chaospy

