
Polynomial chaos expansions part 3:
Intrusive Galerkin method

Jonathan Feinberg and Simen Tennøe

Kalkulo AS

January 23, 2015



Relevant links

A very basic introduction to scientific Python programming:
http://hplgit.github.io/bumpy/doc/pub/sphinx-basics/index.html

Installation instructions:
https://github.com/hplgit/chaospy

http://hplgit.github.io/bumpy/doc/pub/sphinx-basics/index.html
https://github.com/hplgit/chaospy


Repetition of our model problem

We have a simple differential equation

du(x)

dx
= −au(x), u(0) = I

with the solution
u(x) = Ie−ax

with two random input variables:

a ∼ Uniform(0, 0.1), I ∼ Uniform(8, 10)

Want to compute E(u) and Var(u)



The Galerkin method is a projection method for
approximating functions

Given a function space V and inner product on V
〈u, v〉Q =

∫ L
0 uvdx

u′(x) = g(x)∫ L

0
u′(x)v(x)dx =

∫ L

0
g(x)v(x)dx , ∀v ∈ V〈

u′, v
〉
Q

= 〈g , v〉Q (projection)

With u(x ; q) ≈ ûM(x ; q) =
∑N

n=0 cn(x)Pn(q) this leads to a linear
system for the coefficients cn.



Calculating initial condition using Galerkin

ûM(0) = I , ûM =
N∑

n=0

cn(x)Pn(q)

N∑
n=0

cn(0)Pn = I〈
N∑

n=0

cn(0)Pn,Pk

〉
Q

= 〈I ,Pk〉Q k = 0, . . . ,N

N∑
n=0

cn(0) 〈Pn,Pk〉Q = 〈I ,Pk〉Q

ck(0) 〈Pk ,Pk〉Q = 〈I ,Pk〉Q

ck(0) =
〈I ,Pk〉Q
〈Pk ,Pk〉Q

=
E (IPk)

E (P2
k )



Galerkin applied to the differential equation

d

dx
(ûM) = −aûM

d

dx

(
N∑

n=0

cnPn

)
= −a

N∑
n=0

cnPn〈
d

dx

(
N∑

n=0

cnPn

)
,Pk

〉
Q

=

〈
−a

N∑
n=0

cnPn,Pk

〉
Q

k = 0, . . . ,N

d

dx

N∑
n=0

cn 〈Pn,Pk〉Q = −
N∑

n=0

cn 〈aPn,Pk〉Q

d

dx
ck 〈Pk ,Pk〉Q = −

N∑
n=0

cn 〈aPn,Pk〉Q

d

dx
ck = −

N∑
n=0

cn
〈aPn,Pk〉Q
〈Pk ,Pk〉Q

= −
N∑

n=0

cn
E(aPnPk)

E(P2
k )



The Galerkin Projection results in a coupled
(N + 1)× (N + 1) system of differential equations

d

dx
ck(x) = −

N∑
n=0

cn(x)
E (aPnPk)

E (P2
k )

k = 0, . . . ,N

ck(0) =
E (IPk)

E (P2
k )

d

dx
c = −Mc, Mkn =

E (aPnPk)

E (P2
k )



The differential equation system is very sparse
(mostly zeros)

E (PnPk) E (aPnPk)



Intrusive Galerkin usually converges faster

I Original problem: one scalar differential equation

I Stochastic UQ problem: system of differential equations

I The method is called intrusive Galerkin

I The original solver cannot be reused



Solving the set of differential equations numerically

import chaospy as cp

import numpy as np

import odespy

dist_a = cp.Uniform(0, 0.1)

dist_I = cp.Uniform(8, 10)

dist = cp.J(dist_a , dist_I) # joint multivariate dist

P, norms = cp.orth_ttr(n, dist , retall=True)

variable_a , variable_I = cp.variable (2)



Solving the set of differential equations numerically

PP = cp.outer(P, P)

E_aPP = cp.E(variable_a*PP , dist)

E_IP = cp.E(variable_I*P, dist)

def right_hand_side(c, x): # c’ = right_hand_side(c, x)

return -np.dot(E_aPP , c)/norms # -M*c

initial_condition = E_IP/norms

solver = odespy.RK4(right_hand_side)

solver.set_initial_condition(initial_condition)

x = np.linspace(0, 10, 1000)

c = solver.solve(x)[0]

u_hat = cp.dot(P, c)



Intrusive Galerkin usually converges faster


