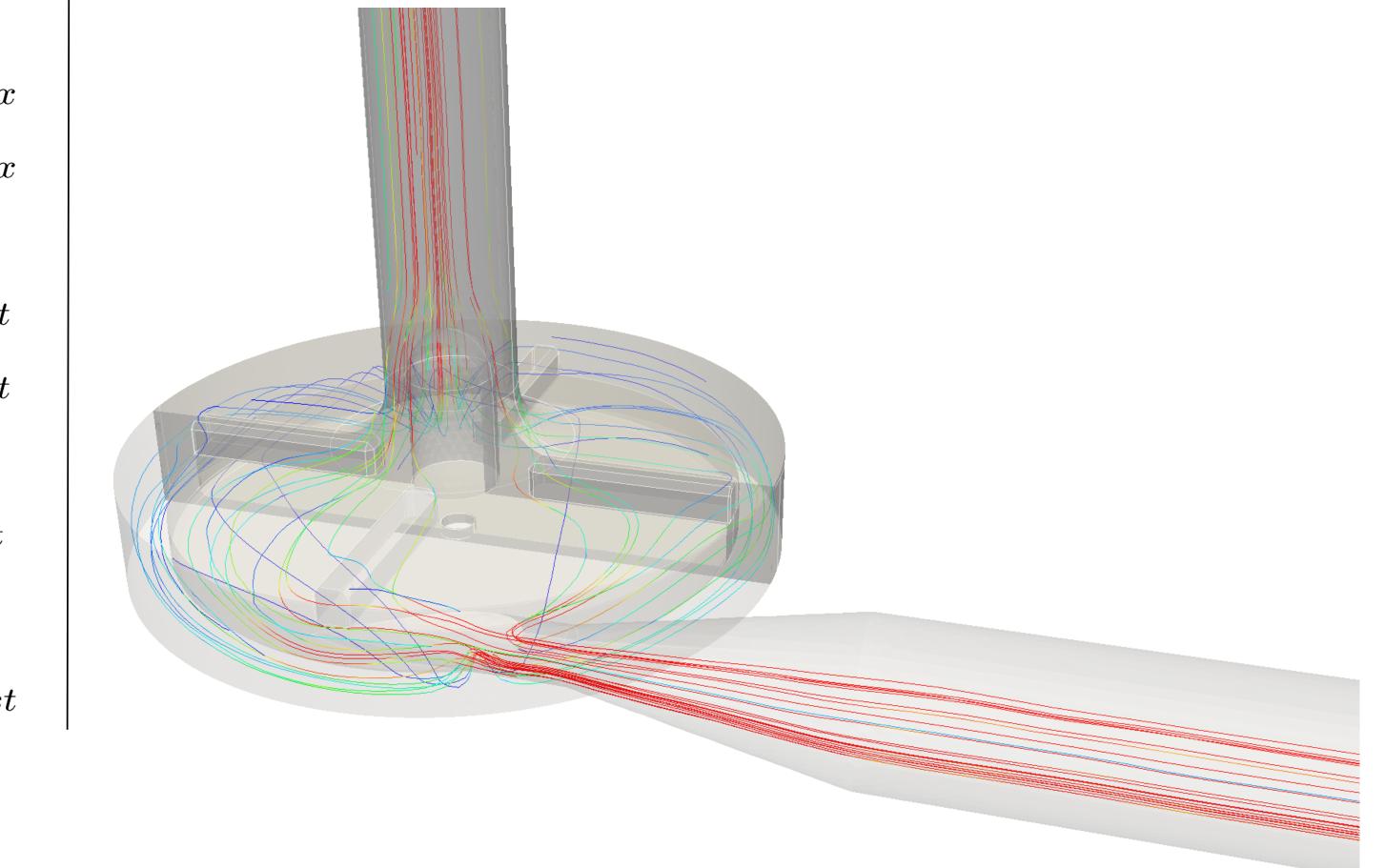


Uncertainty Quantfication for Medical Engineering

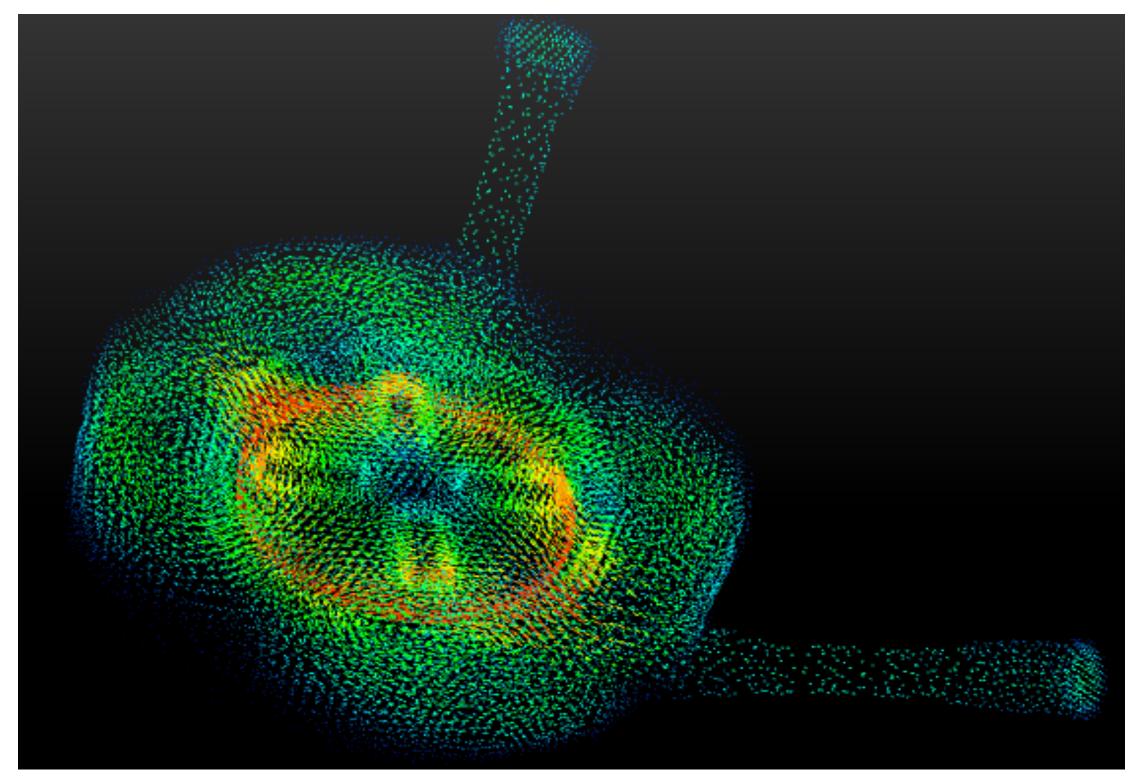
Chen Song^{1,2}, MichaelShick¹, VincentHeuveline^{1,2}

Uncertainty Quantification (UQ) FEM blood pump simulation by using Galerkin projection method (intrusive)

Navier-Stokes equation with uncertain parameters $\rho u(x, \xi) \cdot \nabla u(x, \xi) = -\nabla P(x, \xi) + \mu \nabla^2 u(x, \xi) \quad x \in D_{fix}$



$\nabla \cdot u(x, \boldsymbol{\xi}) = 0$	$x \in D_{fix}$
$\rho u_r(x,\boldsymbol{\xi})\cdot \nabla u_r(x,\boldsymbol{\xi})+$	
$\rho(2\omega \wedge u_r(x,\boldsymbol{\xi}) + \omega \wedge \omega \wedge r) = -\nabla P(x,\boldsymbol{\xi}) + \mu \nabla^2 u_r(x,\boldsymbol{\xi})$	$x \in D_{rot}$
$\nabla \cdot u_r(x, \boldsymbol{\xi}) = 0$	$x \in D_{rot}$
$u(x,\boldsymbol{\xi}) = g(x,\boldsymbol{\xi})$	$x \in \Gamma_{in}$
$u(x, \boldsymbol{\xi}) = 0$	$x \in \Gamma_{out}$
$u(x, \boldsymbol{\xi}) = f(x, \boldsymbol{\xi})$	$x \in \Gamma_{rot}$
$\left(\mathbb{I}P + \frac{\mu}{\rho}u(x,\boldsymbol{\xi})\right) \cdot n = 0$	$x \in \Gamma_{rest}$



Furture works

- High Performance Computing (HPC)
- Rotating effects need to be coupled for instationary state
- Sliding meshes model

numerical result with Multiple Reference Frame(MRF) mehtod

- Improvement of stochastic solvers
- Scability studies
- Analysing with experimental results

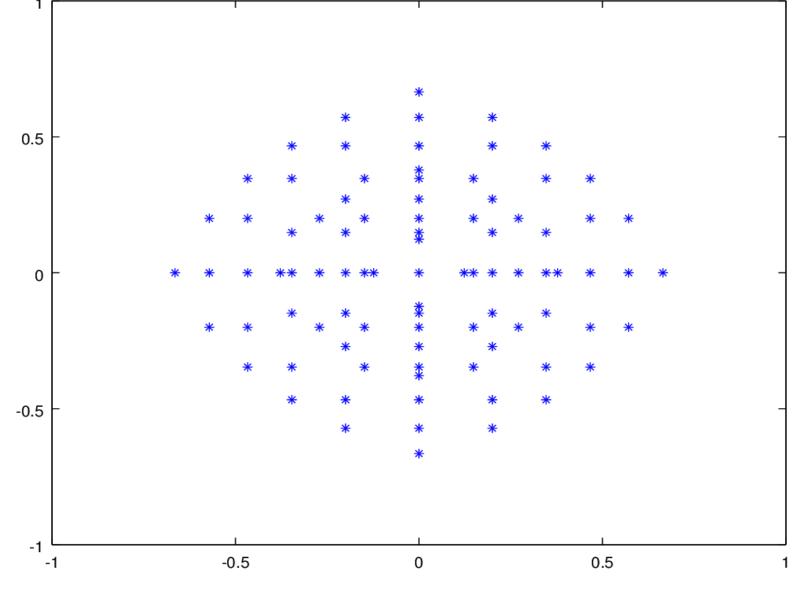
Quantifying medical data by using Collocation sampling method (no-intrusive)

Clinical cooperation workflow

- Collection patient imaging data (daily)
- Selecting anatomical landmarks
- Deformation modeling
 - * landmarks-wise analysis* combined analysis
- Uncertainty modeling and simulation

Collocation method

- Sample random inputs according to probablity distribution
- Perform a sequence of independent simulations
- Analyzing simulation results regard to the quantity of interest
- Different polynomials correspond to different probability behaviors $< Q >= \int Q(\xi) d\xi = \sum_{i=1}^{N} Q(\xi^{i}) w_{i}$



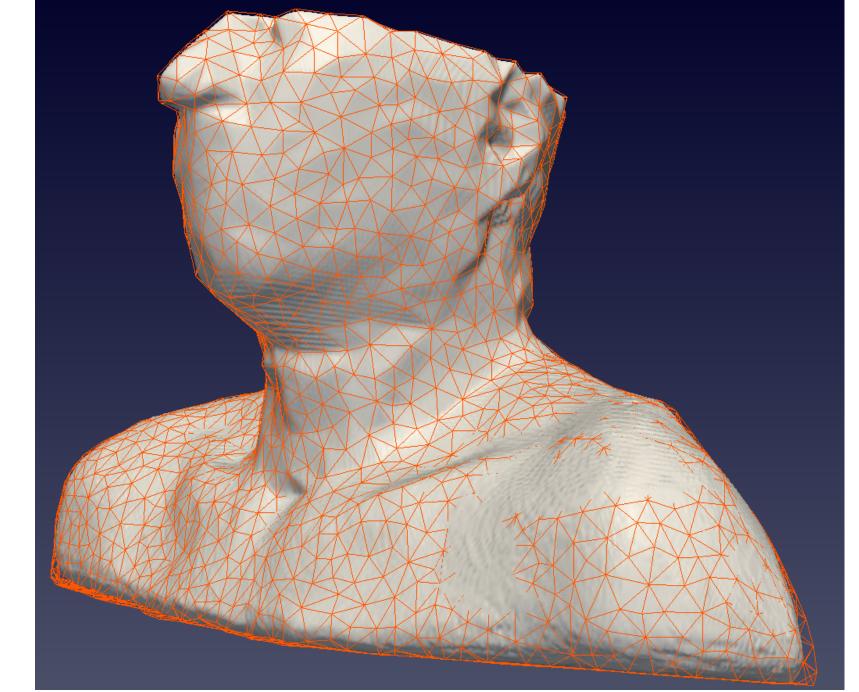
2 dimensions sparse sampling with accuracy level 6 (example)

* head posture variation* neck posture variation

Tumor metastasis data studies

- kV control images from CT-on-rails
- 19 head neck patient data
- 20-30 fraction images
- 24 anatomical landmarks (shoulders, skull, backbones ...)
- Manually propagated to all planning CTs

Volume rendering, single patient, multiple fraction CT images with landmarks



preliminary result: solid color : Monte-Carlo method. gridlines : collocation method

1 Heidelberg Institute for Theoretical Studies, Heidelberg, Germany 2 Interdisciplinary Center for Scientific Computing, Heidelberg University, Germany