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Outline

Outline

• Introduction.

• A few words about validation.

• Application of GOEE to Bayesian Inference.

• Numerical examples.
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Introduction

Introduction

Questions pertaining to validation

Is the model any good?
Is the model a good model?

How good is the model?

If one wants to be philosophical. . .

What is a good model?

Before answering those
questions, one must have an
objective in mind.

Quantities of interest:

Specific objectives that can be
expressed as the target outputs
of a model (mathematically, they
are often defined by functionals
of the solutions).

Examples:

Q(u) = u(x)

Q(u) =

∫
u(x)dx
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Introduction

Some Definitions:

Verification:
The process of determining the accuracy with which a computational model can produce
results deliverable by the mathematical model on which it is based.
⇒ Code and Solution Verification

Validation:
The process of determining the accuracy with which a model can predict observed
physical events (or the important features of a physical reality).

P. Roache (2009): “The process of determining the degree to which a model (and its
associated data) is an accurate representation of the real world from the perspective of the
intended uses of the model”.

Uncertainty Quantification:
The process of determining the degree of uncertainty in the prediction of the QoI. Typically,
the degree of uncertainty is related to the probability distribution for the QoI.
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Introduction
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Oden, Moser, and Ghattas, SIAM News, (Nov. 2010)
Oden and Prudhomme, IJNME (Sept. 2010)
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Introduction

Control of Errors

Errors are all a matter of comparison!

• Code Verification: Using the method of “manufactured solutions”, for
example, we can easily compare the computed solution with the
manufactured solution.

• Solution Verification: In this case, the solution of the problem is
unknown and one can use convergence (uniform or adaptive
methods) to assess the accuracy of the approximate solutions.

• Calibration Process: Comparison of observable data with model
estimates of the observables.

• Validation Process: The main idea behind validation is to know
whether a model can be used for prediction purposes.

⇒What should we compare in this case?
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Validation Process

Validation Process

1. Calibration:

Identification of values of parameters of a model designed to bring
model results into agreement with measurements.

2. Validation:

The process of determining the accuracy with which a model can
predict observed physical events (or the important features of a
physical reality).

3. Prediction:

The forecast of an event (a predicted event cannot be measured or
observed, for then it ceases to be a prediction).
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Validation Process

The Prediction Pyramid
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Validation Process

Classical Approach for Validation
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Validation Process

Proposed Validation Process (2009)
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Planning of Validation Processes

Validation process requires detailed planning:

1. Description of goals: Describe background and goals of the predictions.
Clearly define the quantity (or quantities) of interest.

2. Modeling: Write mathematical equations of selected model(s), list all
parameters that are necessary to solve the problem, as well as assumptions
and limitations of the model(s),

3. Data collection: Collect as many data as possible from literature or
available sources (data should include, if available, the statistics).

4. Sensitivity analysis: Quantify the sensitivity of QoI with respect to
parameters of the model. Rank parameters according to their influence.

5. Calibration experiments: Provide description of scenario (as precisely as
possible), observables and statistics, prior and likelihood of the parameters
to be calibrated.

6. Validation experiments: Provide same as above + clearly state
assumption to be validated.
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Planning of Validation Processes

Morgan & Henrion’s “Ten Commandements” (1990)∗

In relation to quantitative risk and policy analysis

1. Do your homework with literature, experts and users.

2. Let the problem drive the analysis.

3. Make the analysis as simple as possible, but no simpler.

4. Identify all significant assumptions.

5. Be explicit about decision criteria and policy strategies.

6. Be explicit about uncertainties.

7. Perform systematic sensitivity and uncertainty analysis.

8. Iteratively refine the problem statement and the analysis.

9. Document clearly and completely.

10. Expose to peer review.

∗ Extracted from D. Vose, “Risk Analysis: A Quantitative Guide” (2008)
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Planning of Validation Processes

A systematic approach to the planning and implementation of experiments
(Chapter 1 - Section 2)

In Wu & Hamada “Experiments, Analysis, and Optimization” (2009)

1. State objective.

2. Choose response.

3. Choose factors and levels.

4. Choose experimental plan.

5. Perform the experiment.

6. Analyze the data.

7. Draw conclusions and make recommendations:

. . . the conclusions should refer back to the stated objectives of the experiment.
A confirmation experiment is worthwhile for example, to confirm the recommended
settings. Recommendations for further experimentation in a follow-up experiment
may also be given. For example, a follow-up experiment is needed if two models
explain the experimental data equally well and one must be chosen for optimization.
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Planning of Validation Processes

Planning
• Planning is a cumbersome and time-consuming process.

• Planning of validation processes involves many choices that
eventually need to be carefully checked.

Choices are made about:
• Physical models
• Quantities of interest and surrogate quantities of interest
• Experiments for calibration and validation purposes
• Data sets to be used in calibration and validation
• Prior pdf and likelihood function
• Probabilistic models . . .

Our preliminary experiences with validation has revealed that many “sanity
checks” need to be added within the proposed validation process.

Our objective is to develop a suite of tools to systematically verify the
correctness of each stage of the validation process.
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Efficient Bayesian inference - model selection for RANS

Adaptive Response Surface for Parameter Estimation

Objective

The main objective here is to develop a methodology based on
response surface models and goal-oriented error estimation for
efficient and reliable parameter estimation in turbulence
modeling.
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Efficient Bayesian inference - model selection for RANS

Bayesian inference for RANS using surrogate models

Efficient Bayesian inference: Approximate response surface models can
be used to reduce the computational cost of the process.

• Ma and Zabaras, 2009.

• Li and Marzouk, 2014;
Marzouk and Xiu, 2009;
Marzouk and Najm, 2009.

UQ for RANS models: Uncertainty in the RANS model parameters is a
known issue in the turbulence community, but quantifying the effect of this
uncertainty is seldom analyzed in the computational fluid dynamics
literature.

• Cheung et al., 2011.

• Oliver and Moser, 2011.
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Efficient Bayesian inference - model selection for RANS

Fully developed incompressible channel flow

Mean flow equations: u = U + u′
DUi
Dt

= −1

ρ

∂P

∂xi
+

∂

∂xj

(
ν
∂Ui
∂xj
− u′

iu
′
j

)
∇ ·U = 0

Eddy viscosity assumption:

u′
iu

′
j = −νT (Ui,j + Uj,i)

Channel equations: assuming homogeneous turbulence in x

∂

∂y

(
(ν + νT )

∂U

∂y

)
= 1, y ∈ (0, H)

1Durbin and Petterson Reif, 2001; Pope, 2000
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Efficient Bayesian inference - model selection for RANS

Spalart-Allmaras (SA) model

Eddy viscosity is given by:

νT = ν̃fv1, fv1 = χ3/(χ3 + cv1
3), χ = ν̃/ν

where ν̃ is governed by the transport equation

Dν̃

Dt
= Pν̃(κ, cb1)− εν̃(κ, cb1, σSA, cw2)

+
1

σSA

[
∂

∂xj

(
(ν + ν̃)

∂ν̃

∂xj

)
+ cb2

∂ν̃

∂xj

∂ν̃

∂xj

]
with

• Pν̃ = production term

• Dν̃ = wall destruction term

Parameter Values
κ 0.41 cb2 0.622
cb1 0.1355 cv1 7.1
σSA 2/3 cw2 0.3

1Allmaras, Johnson, and Spalart, 2012; Oliver and Darmofal, 2009
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Efficient Bayesian inference - model selection for RANS

Forward model: Find U and ν̃ such that
1 =

∂

∂y

(
(ν + νT (cv1))

∂U

∂y

)
0 = Pν̃(κ, cb1)− εν̃(κ, cb1, σSA, cw2) +

1

σSA

∂

∂y

[(
(ν + ν̃)

∂ν̃

∂y

)
+ cb2

(
∂ν̃

∂y

)2
]

Boundary conditions:

U(0) = 0, ∂yU(H) = 0, ν̃(0) = 0, ∂yν̃(H) = 0

Weak formulation:

Find (U, ν̃) ∈ V s.t. B((U, ν̃); (V, µ)) = F(V, µ), ∀(V, µ) ∈ V

Quantity of interest and adjoint problem:

Find (Z, ζ) ∈ V s.t.

B′((U, ν̃); (Z, ζ), (V, µ)) = Q(V, µ) =
∫ H

0 V dy ∀(V, µ) ∈ V
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Efficient Bayesian inference - model selection for RANS

Adaptive Response Surface

• Uniform priors for all parameters with range (0.5, 1.5) times nominal
value (e.g. κ ∼ U(0.205, 0.615))

• Adapted expansion order (after 17 iterations):
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Efficient Bayesian inference - model selection for RANS

Bayesian inference

Bayes rule:

p(ξ|q) = L(ξ|q) p(ξ)
p(q)

where


q ∈ Rn = Calibration data
L(ξ|q) = Likelihood
p(ξ) = Prior
p(ξ|q) = Posterior

Model selection:
• Set of modelsM = {M1,M2, . . . ,Mn}
• Posterior plausibility = p(Mi|q,M)

• Likelihood =
E(Mi|q,M) := p(q|Mi,M) =

∫
Ξ
p(q|ξ,Mi,M)p(ξ|Mi,M) dξ

p(Mi|q,M) ∝ E(Mi|q,M) p(Mi|M)

1Calvetti and Somersalo, 2007; Jaynes, 2003; Kaipio and Somersalo, 2005
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Efficient Bayesian inference - model selection for RANS

Calibration data:
• Data is obtained from direct numerical simulation (DNS) 1

• Mean velocity measurements were taken at Reτ = 944 and
Reτ = 2003

Uncertainty models:
• Three multiplicative error models

〈u〉+ (z; ξ) = (1 + ε(z; ξ))U+(z; ξ)

I independent homogeneous covariance
I correlated homogeneous covariance
I correlated inhomogeneous covariance

• Reynolds stress model〈
u′
iu

′
j

〉+
(z; ξ) = T+(z; ξ)− ε(z; ξ)

1Del Alamo et al., 2004; Hoyas and Jiménez, 2006
S. Prudhomme Adaptive Response Approximations January 18-23, 2015 22 / 28



Efficient Bayesian inference - model selection for RANS

Numerical Results

Independent homogeneous covariance:

〈u〉+ (z; ξ) = (1 + ε(z; ξ))U+(z; ξ)〈
ε(z)ε(z′)

〉
= σ2δ(z − z′)
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Efficient Bayesian inference - model selection for RANS

Numerical Results

Correlated homogeneous covariance:

〈u〉+ (z; ξ) = (1 + ε(z; ξ))U+(z; ξ)〈
ε(z)ε(z′)

〉
= σ2 exp

(
−1/2(z − z

′)2

l2

)
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Efficient Bayesian inference - model selection for RANS

Numerical Results

Correlated inhomogeneous covariance:

〈u〉+ (z; ξ) = (1 + ε(z; ξ))U+(z; ξ)〈
ε(z)ε(z′)

〉
= σ2

(
2l(z)l(z′)

l2(z) + l2(z′)

)1/2

exp

(
− (z − z′)2
l2(z) + l2(z′)

)
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Efficient Bayesian inference - model selection for RANS

Numerical Results

Reynolds stress uncertainty:〈
u′
iu

′
j

〉+
(z; ξ) = T+(z; ξ)− ε(z; ξ)〈

ε(z)ε(z′)
〉
= kin(z, z

′) + kout(z, z
′)

where kin models the error near the walls and kout far from the walls.
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Efficient Bayesian inference - model selection for RANS

Numerical Results: Model selection

Model evidence (log(E)):

Surrogate Full model
Independent homogeneous -1.457 8.862
Correlated homogeneous 1.963 8.045
Correlated inhomogeneous 164.9 164.0
Reynolds stress 164.8 169.0

Relative runtimes (in seconds):

Surrogate Full model
Independent homogeneous 130 1720
Correlated homogeneous 162 1906
Correlated inhomogeneous 151 1735
Reynolds stress 147 1743
Cumulative 590 7104
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Conclusions

Concluding remarks and future work

• We need to think about errors and error control in computational
science and engineering. We need quantitative methods to assess
the reliability of our predictions (with respect to a given goal).

• Formulation of the problem should be done with respect to the goal of
the computation, not necessarily by minimizing the energy of the
system.
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