Integration Requirements for Cross-Disciplinary Uncertainty Quantification turn Workflows into a Big-loop and Big-data Exercise?

Ralf Schulze-Riegert Schlumberger Information Solutions; SPT Technology Center, Kjeller, Norway

Abstract

 Reservoir model validation and uncertainty quantification workflows have significantly developed over recent years. Different optimization approaches were introduced and requirements for consistent uncertainty quantification workflows changed. Most of all integration requirements across multiple domains (big-loop) increase the complexity of workflow designs and amount of data (big-data) processed in the course of workflow execution. This triggers new requirements for the choice of optimization and uncertainty quantification methods in order to add value to decision processes in reservoir management. In this session we will discuss an overview on existing methods and perspectives for new methodologies based on parameter screening, proxy-based as well as analytical sensitivity approaches.

Principal Component Analysis

Optimization Approach

Ref: SDR

Geologically constrained history matching with PCA Michael D. Prange, Thomas P. Dombrowsky and William J. Bailey first break volume 30, November 2012

10

Summary EnKF

- Well suited for updating entire property fields
- · Consistent uncertainty handling for establishing a posterior probability distribution
- Also used for updating alternative parameters (WOC, relative permability, fault transmissiblities) cf. A. Seidler 2009, Y. Chen 2009.
- Sequential update scheme supports closed-loop approaches.
- Changing dynamical parameters remains conceptually difficult.

Domain	Description	Type 🔻	Form 🔻	Parameter(s)	Input properties v
Geology	Structure	Discrete	Set	N/A	N/A
Geology	Lateral continuity	Continuous	Function	TBD	TBD
etrophysics	Porosity	Continuous	Algorithm	phi_mean	PORO
Petrophysics	Permeability	Continuous	Algorithm	k_mean	PERMX
Petrophysics	Vertical anisotropy	Continuous	Function	kvkh_mult	PERMX
SCAL	Saturation end points	Continuous	Constant	SOGCR	SOGCR
SCAL	Saturation end points	Continuous	Constant	sgcr1	SOGCR, SWL
SCAL	Permeability end points	Continuous	Constant	KRORG	KRORG
SCAL	Permeability end points	Continuous	Constant	KRGR	KRGR
SCAL	Curvature	Continuous	Function	Lg	N/A
SCAL	Curvature	Continuous	Function	Eg	N/A
SCAL	Curvature	Continuous	Function	Tg	N/A
SCAL	Curvature	Continuous	Function	Lo	N/A
SCAL	Curvature	Continuous	Function	Eo	N/A
SCAL	Curvature	Continuous	Function	То	N/A
PVT	PVT model	Discrete	Set	N/A	N/A
PVT	PVT model	Discrete	Set	N/A	N/A
racturing	HF parameters	Discrete	Constant	Xf	N/A
racturing	HF parameters	Discrete	Constant	wf	N/A
Fracturing	HF parameters	Discrete	Constant	Fc (Kprop)	N/A
Fracturing / SCAL	Curvature	Continuous	Function	n (Corey-like)	N/A
ROCK	Compressibility table - porosity	Continuous	Function	poro_sl (slope in log scale)	N/A
OCK	Compressibility table - permeability	Continuous	Function	perm_sl (slope in log scale)	N/A

0000	Re	 Additional Structure <
------	----	--