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The Problem
We want to develop a numerical method to simulate wave maps to
the sphere. By wave maps we mean vector functions d = (d1, d2, d3)
satisfying the constrained wave equation

dtt −∆d = γd, |d| = 1, in (0,∞)× Ω, (1)

Ω = [0, 1]n or Ω = Tn, n = 2, 3 with periodic or Neumann boundary
conditions.

Iγ is a Langrange multiplier enforcing |d| = 1.
IDotting (1) with d, we find γ = |∇d|2− |dt|2,
so (1) is higly nonlinear.

ISingularities may develop in the solutions, cf.
Figure 3.

IEnsuring that numerical approximations
conserve the constraint and a discrete
version of the energy is crucial to obtain a
stable method.

Figure 1: Defects (singularities in
d) in a nematic liquid crystal

Application: Liquid Crystals

Nematic liquid crystals are materials that
exhibit intermediate states between the
liquid and the solid phase. They consist
of elongated molecules that tend to align
along the same axis, [3].

IThe director field d(x) describes this
main orientation of the molecules.

Figure 2: Schematic view of the molecules
of a liquid crystal

I Its dynamics can be described by the Euler-Lagrange equations
corresponding to the Oseen-Frank elastic energy,

WOF = 1
2
K1(∇ · d)2 + 1

2
K2(d · (∇× d))2 + 1

2
K3(d× (∇× d))2,

where K1, K2, and K3 are material constants, including inertia
effects.

I (1) corresponds to the special case when K1 = K2 = K3 = 1, the
one-constant approximation.

The Method
We introduce the angular momentum
w = dt × d, so that the wave map
equation (1) can be reformulated as

dt = d× w,
wt = ∆d× d. (2)
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Figure 3: The approximation of (2) by the difference method (4) for an
initial data developing a singularity at x = 0, N = 27; [2].

IPreservation of the constraint |d| = 1 is inherit in
the equation, no need for Lagrange multiplier.

IThe energy E is formally preserved,
E(t) :=

∫
Ω

(
|w|2 + |∇d|2

)
(t)dx = E(0). (3)

I It can easily be cast into a finite difference method:

dm+1
i − dmi

∆t
= d

m+1/2
i × wm+1/2

i ,

wm+1
i − wm

i

∆t
= ∆i d

m+1/2
i × dm+1/2

i ,

(4)

where fm+1/2 := fm+fm+1

2 is the average of two time
steps, fmi ≈ f (m∆t, xi), xi := xi,j,k = (ih, jh, kh),
for time step and grid sizes ∆t, h > 0, and ∆i is a
standard discretization of the Laplace operator.
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Figure 4: The evolution of the discrete energy Em and the
maximum of the gradient versus time for the same data as in
Figure 3.

Future research directions
IExtension of the angular momentum method to general coefficients
K1 6= K2 6= K3,

I Inclusion of effects of electric and magnetic fields on liquid crystal dynamics and
extend the work of [1],

I Incooperation of damping terms in the wave equation,
ICoupling of the director field with the convection by the flow of the fluid.
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Conclusions
IThe method conserves a discrete version of the energy, (3).

IThe constraint |d| = 1 is satisfied at every gridpoint, that is,
|dmi | = 1 for all m and i.

IApproximations can be shown to converge to a weak solution of
(2).

IFixpoint iteration can be used to solve the nonlinear system (4) in
O(Nn logN) operations up to a tolerance N−2, N the number
of degrees of freedom in one space dimension, linear stability
condition for the time stepping: ∆t ≤ CN−1, C > 0 a constant.

IThe method is able to capture effects such as blow-up of
solutions, cf. Figure 3.
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