

An Angular Momentum Method for the Wave Map to the Sphere

Trygve Karper¹, Johanna Ridder² and Franziska Weber²

¹Norwegian University of Science and Technology (NTNU), ²University of Oslo (UiO)

The Problem

We want to develop a numerical method to simulate wave maps to the sphere. By *wave maps* we mean vector functions $d = (d_1, d_2, d_3)$ satisfying the constrained wave equation

 $d_{tt} - \Delta d = \gamma d, \quad |d| = 1, \quad \text{in } (0, \infty) \times \Omega, \tag{1}$ $\Omega = [0, 1]^n \text{ or } \Omega = \mathbb{T}^n, \ n = 2, 3 \text{ with periodic or Neumann boundary conditions.}}$

Application: Liquid Crystals

Nematic liquid crystals are materials that exhibit intermediate states between the liquid and the solid phase. They consist of elongated molecules that tend to align along the same axis, [3].

The *director field* d(x) describes this

Figure 2: Schematic view of the molecules of a liquid crystal

γ is a Langrange multiplier enforcing |d| = 1.
Dotting (1) with d, we find γ = |∇d|² - |d_t|², so (1) is higly nonlinear.

- Singularities may develop in the solutions, cf. Figure 3.
- Ensuring that numerical approximations conserve the constraint and a discrete version of the energy is crucial to obtain a stable method.

Figure 1: Defects (singularities in *d*) in a nematic liquid crystal

main orientation of the molecules.

Its dynamics can be described by the Euler-Lagrange equations corresponding to the Oseen-Frank elastic energy,

 $W_{OF} = \frac{1}{2}K_1(\nabla \cdot d)^2 + \frac{1}{2}K_2(d \cdot (\nabla \times d))^2 + \frac{1}{2}K_3(d \times (\nabla \times d))^2,$ where K_1 , K_2 , and K_3 are material constants, including inertia effects.

► (1) corresponds to the special case when K₁ = K₂ = K₃ = 1, the one-constant approximation.

(3)

The Method

We introduce the angular momentum $w = d_t \times d$, so that the wave map equation (1) can be reformulated as

$$d_t = d imes w,$$

 $w_t = \Delta d imes d.$

- ▶ Preservation of the constraint |d| = 1 is inherit in the equation, no need for Lagrange multiplier.
- The energy \mathcal{E} is formally preserved, $\mathcal{E}(t) := \int_{\Omega} \left(|w|^2 + |\nabla d|^2 \right) (t) dx = \mathcal{E}(0).$

Figure 3: The approximation of (2) by the difference method (4) for an initial data developing a singularity at x = 0, $N = 2^7$; [2].

It can easily be cast into a finite difference method:

where $f^{m+1/2} := \frac{f^m + f^{m+1}}{2}$ is the average of two time steps, $f_{\underline{i}}^m \approx f(m\Delta t, x_{\underline{i}})$, $x_{\underline{i}} := x_{i,j,k} = (ih, jh, kh)$, for time step and grid sizes $\Delta t, h > 0$, and $\Delta_{\underline{i}}$ is a standard discretization of the Laplace operator.

Figure 4: The evolution of the discrete energy \mathcal{E}_m and the maximum of the gradient versus time for the same data as in Figure 3.

Future research directions

(2)

- Extension of the angular momentum method to general coefficients $K_1 \neq K_2 \neq K_3$,
- Inclusion of effects of electric and magnetic fields on liquid crystal dynamics and

Conclusions

- ► The method conserves a discrete version of the energy, (3).
- The constraint |d| = 1 is satisfied at every gridpoint, that is,

extend the work of [1],

- Incooperation of damping terms in the wave equation,
- Coupling of the director field with the convection by the flow of the fluid.

Bibliography

- [1] P. Aursand, J. Ridder. *The influence of inertia on the dynamics of the director for a nematic liquid crystal coupled with an electric field*. Communications in Computational Physics, 2015.
- [2] T. Karper, F. Weber. *A new angular momentum method for computing wave maps into spheres*. SIAM Journal on Numerical Analysis, 52(4):2073 2091, 2014.
- [3] I. W. Stewart. *The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction*. CRC Press, 2004.

¹karper@math.ntnu.no, ²{fraziskw,johanrid}@math.uio.no

Pictures from: http://matdl.org/matdlwiki/index.php/File:Liquidcrystal.jpg,

http://www.redorbit.com/media/gallery/national-science-foundation-gallery/pf2363_oleg080_h.jpg

$|d_{\underline{i}}^m| = 1$ for all m and \underline{i} .

Approximations can be shown to converge to a weak solution of
 (2).

• Fixpoint iteration can be used to solve the nonlinear system (4) in $\mathcal{O}(N^n \log N)$ operations up to a tolerance N^{-2} , N the number of degrees of freedom in one space dimension, linear stability condition for the time stepping: $\Delta t \leq CN^{-1}$, C > 0 a constant.

The method is able to capture effects such as blow-up of solutions, cf. Figure 3.