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Nonlinear optimization

A nonlinear optimization problem takes the form

minimize
x∈Rn

f (x)

subject to gi(x) ≥ 0, i ∈ I,
gi(x) = 0, i ∈ E ,

I
⋃
E = {1, . . . , m},

I
⋂
E = ∅.

where f and gi , i = 1, . . . , m, are nonlinear smooth functions
from Rn to R.
The feasible region is denoted by F . In our case

F = {x ∈ Rn : gi(x) ≥ 0, i ∈ I, gi(x) = 0, i ∈ E}.
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Example problem

Construct a box of volume 1 m3 so that the space diagonal is
minimized. What does it look like?
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Formulation of example problem

x
x

x

1

2

3

Introduce variables xi , i = 1, . . . 3. We obtain

(P)

minimize
x∈R3

x2
1 + x2

2 + x2
3

subject to x1 · x2 · x3 = 1,
xi ≥ 0, i = 1, 2, 3.

The problem is not convex.
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Alternative formulation of example problem

We have the formulation

(P)

minimize
x∈R3

x2
1 + x2

2 + x2
3

subject to x1 · x2 · x3 = 1,
xi ≥ 0, i = 1, 2, 3.

Replace xi ≥ 0, i = 1, . . . , 3 by xi > 0, i = 1, . . . , 3.
Let yi = ln xi , i = 1, 2, 3, which gives

(P ′)
minimize

y∈R3
e2y1 + e2y2 + e2y3

subject to y1 + y2 + y3 = 0.

This problem is convex.
Is this a simpler problem to solve?
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Applications of nonlinear optimization

Nonlinear optimization arises in a wide range of areas.
Two application areas will be menioned in this talk:

Radiation therapy.
Telecommunications.

The optimization problems are often very large.
Problem structure is highly important.

A. Forsgren: Nonlinear Optimization eVITA Winter School 2009



Problem classes in nonlinear optimization

Important problem classes in nonlinear optimization:

Linear programming.
Quadratic programming.
General nonlinear programming.
...

Some comments:

Convexity is a very useful poperty.
Nonlinear (nonconvex) constraints cause increased
difficulty.
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Convex program

Proposition

Let F = {x ∈ Rn : gi(x) ≥ 0, i ∈ I, gi(x) = 0, i ∈ E}. Then F is
a convex set if gi , i ∈ I, are concave functions on Rn and gi ,
i ∈ E , are affine functions on Rn.

We refer to the problem

minimize f (x)

subject to gi(x) ≥ 0, i ∈ I,
gi(x) = 0, i ∈ E ,
x ∈ Rn,

I
⋃
E = {1, . . . , m},

I
⋂
E = ∅,

as a convex program if f and −gi , i ∈ I, are convex functions
on Rn, and −gi , i ∈ I, are affine functions on Rn.
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Optimality conditions for nonlinear programs

Consider a nonlinear program

(P)
minimize f (x)

subject to x ∈ F ⊆ Rn,
where f ∈ C2.

Definition
A direction p is a feasible direction to F at x∗ if there is an ᾱ > 0
such x∗ + αp ∈ F for α ∈ [0, ᾱ].

Definition

A direction p is a descent direction to f at x∗ if ∇f (x∗)Tp < 0.

Definition
A direction p is a direction of negative curvature to f at x∗ if
pT∇2f (x∗)Tp < 0.
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Optimality conditions for unconstrained problems

Consider an unconstrained problem

(P)
minimize f (x)

subject to x ∈ Rn,
where f ∈ C2.

Theorem (First-order necessary optimality conditions)

If x∗ is a local minimizer to (P) then ∇f (x∗) = 0.

Theorem (Second-order necessary optimality conditions)

If x∗ is a local minimizer to (P) then ∇f (x∗) = 0, ∇2f (x∗) � 0.

Theorem (Second-order sufficient optimality conditions)

If ∇f (x∗) = 0, ∇2f (x∗) � 0 then x∗ is a local minimizer to (P).
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Optimality conditions, linear equality constraints

Consider an equality-constrained problem

(P=)
minimize f (x)

subject to Ax = b, x ∈ Rn,
where f ∈ C2, A full row rank.

Let F = {x ∈ Rn : Ax = b}. Assume that x̄ is a known point in
F , and let x be an arbitrary point in F . Then, A(x − x̄) = 0,
i.e. x − x̄ ∈ null(A).
If Z denotes a matrix whose columns form a basis for null(A), it
means that x − x̄ = Zv for some v ∈ Rn−m.
For example, if A = (B N), where B is m ×m and invertible, we

may choose x̄ =

(
B−1b

0

)
and Z =

(
−B−1N

I

)
.
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Optimality conditions, linear equality constraints, cont.

Let ϕ(v) = f (x̄ + Zv). We may rewrite the problem according to

(P ′=)
minimize ϕ(v)

subject to v ∈ Rn−m.

Differentiation gives ∇ϕ(v) = Z T∇f (x̄ + Zv),
∇2ϕ(v) = Z T∇2f (x̄ + Zv)Z .
This is an unconstrained problem, where we know the
optimality conditions.
We may apply them and identify x∗ = x̄ + Zv∗, where v∗ is
associated with (P ′=).
Z T∇f (x) is called the reduced gradient of f at x .
Z T∇2f (x)Z is called the reduced Hessian of f at x .
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Necessary optimality conditions, equality constraints

(P=)
minimize f (x)

subject to Ax = b, x ∈ Rn,
where f ∈ C2, A full row rank.

Theorem (First-order necessary optimality conditions)

If x∗ is a local minimizer to (P=), then
(i) Ax∗ = b, and
(ii) Z T∇f (x∗) = 0.

Theorem (Second-order necessary optimality conditions)

If x∗ is a local minimizer to (P=), then
(i) Ax∗ = b,
(ii) Z T∇f (x∗) = 0, and
(iii) Z T∇2f (x∗)Z � 0.
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Sufficient optimality conditions, equality constraints

(P=)
minimize f (x)

subject to Ax = b, x ∈ Rn,
where f ∈ C2, A full row rank.

Theorem (Second-order sufficient optimality conditions)
If
(i) Ax∗ = b,
(ii) Z T∇f (x∗) = 0, and
(iii) Z T∇2f (x∗)Z � 0,

then x∗ is a local minimizer to (P=).
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Lagrange multipliers

Proposition

Let A ∈ Rm×n. The null space of A and the range space of AT

are orthogonal spaces that together span Rn.

We have Z Tc = 0 ⇐⇒ c = ATλ for some λ.
In particular, let c = ∇f (x∗).
We have Z T∇f (x∗) = 0 if and only if ∇f (x∗) = ATλ∗ for
some λ∗ ∈ Rm.
We call λ∗ Lagrange multiplier vector.
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Necessary optimality conditions, equality constraints

(P=)
minimize f (x)

subject to Ax = b, x ∈ Rn,
where f ∈ C2, A full row rank.

Theorem (First-order necessary optimality conditions)

If x∗ is a local minimizer to (P=), then
(i) Ax∗ = b, and
(ii) ∇f (x∗) = ATλ∗ for some λ∗ ∈ Rm.

Theorem (Second-order necessary optimality conditions)

If x∗ is a local minimizer to (P=), then
(i) Ax∗ = b,
(ii) ∇f (x∗) = ATλ∗ for some λ∗ ∈ Rm, and
(iii) Z T∇2f (x∗)Z � 0.
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Sufficient optimality conditions, equality constraints

(P=)
minimize f (x)

subject to Ax = b, x ∈ Rn,
where f ∈ C2, A full row rank.

Theorem (Second-order sufficient optimality conditions)

If
(i) Ax∗ = b,
(ii) ∇f (x∗) = ATλ∗ for some λ∗ ∈ Rm, and
(iii) Z T∇2f (x∗)Z � 0,

then x∗ is a local minimizer to (P=).
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Optimality conditions, linear equality constraints, cont.

(P=)
minimize f (x)

subject to Ax = b, x ∈ Rn,
where f ∈ C2, A full row rank.

If we define the Lagrangian L(x , λ) = f (x)− λT(Ax − b), the
first-order optimality conditions are equivalent to(

∇xL(x∗, λ∗)
∇λL(x∗, λ∗)

)
=

(
∇f (x∗)− ATλ∗

b − Ax∗

)
=

(
0
0

)
.

Alternatively, the requirement is Ax∗ = b where the problem

minimize ∇f (x∗)Tp

subject to Ap = 0, p ∈ Rn,

has optimal value zero.
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Optimality conditions, linear inequality constraints

Assume that we have inequality constraints according to

(P≥)
minimize f (x)

subject to Ax ≥ b, x ∈ Rn,
where f ∈ C2.

Consider a feasible point x∗. Partition A =

(
AA

AI

)
,

b =

(
bA

bI

)
, where AAx∗ = bA and AIx∗ > bI .

The constraints AAx ≥ bA are active at x∗.
The constraints AIx ≥ bI are inactive at x∗.
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Optimality conditions, linear inequality constraints

If x∗ is a local minimizer to (P≥) there must not exist a feasible
descent direction in x∗. Thus the problems

minimize ∇f (x∗)Tp

subject to AAp ≥ 0,

maximize 0TλA

subject to AT
AλA = ∇f (x∗), λA ≥ 0,

must have optimal value zero. (The second problem is the LP-
dual of the first one.) Consequently, there is λ∗A ≥ 0 such that
AT

Aλ∗A = ∇f (x∗).
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Necessary optimality conditions, linear ineq. cons.

(P≥)
minimize f (x)

subject to Ax ≥ b, x ∈ Rn,
where f ∈ C2.

Theorem (First-order necessary optimality conditions)

If x∗ is a local minimizer to (P≥) it holds that
(i) Ax∗ ≥ b, and
(ii) ∇f (x∗) = AT

Aλ∗A for some λ∗A ≥ 0,
where AA is associated with the active constraints at x∗.

The first-order necessary optimality conditions are often
referred to as the KKT conditions.
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Necessary optimality conditions

(P≥)
minimize f (x)

subject to Ax ≥ b, x ∈ Rn,
where f ∈ C2.

Theorem (Second-order necessary optimality conditions)

If x∗ is a local minimizer to (P≥) it holds that
(i) Ax∗ ≥ b, and
(ii) ∇f (x∗) = AT

Aλ∗A for some λ∗A ≥ 0,
(iii) Z T

A∇2f (x∗)ZA � 0,
where AA is associated with the active constraints at x∗ and ZA
is a matrix whose columns form a basis for null(AA).

Condition (iii) corresponds to replacing Ax ≥ b by AAx = bA.

A. Forsgren: Nonlinear Optimization eVITA Winter School 2009



Sufficient optimality conditions for linear constraints

(P≥)
minimize f (x)

subject to Ax ≥ b, x ∈ Rn,
where f ∈ C2.

Theorem (Second-order sufficient optimality conditions)
If
(i) Ax∗ ≥ b,
(ii) ∇f (x∗) = AT

Aλ∗A for some λ∗A > 0, and
(iii) Z T

A∇2f (x∗)ZA � 0,
then x∗ is a local minimizer to (P≥), where AA is associated
with the active constraints at x∗ and ZA is a matrix whose
columns form a basis for null(AA).

(Slightly more complicated if λ∗A ≥ 0, λ∗A 6> 0.)
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Necessary optimality conditions

(P≥)
minimize f (x)

subject to Ax ≥ b, x ∈ Rn,
where f ∈ C2.

The first-order necessary optimality conditions are often stated
with an m-dimensional Lagrange-multiplier vector λ∗.

Theorem (First-order necessary optimality conditions)

If x∗ is a local minimizer to (P≥) then x∗ and some λ∗ ∈ Rm

satisfy
(i) Ax∗ ≥ b,
(ii) ∇f (x∗) = ATλ∗,
(iii) λ∗ ≥ 0, and
(iv) λ∗i (a

T
i x∗ − bi) = 0, i = 1, . . . , m.
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Necessary optimality conditions, linear constraints

(P)

minimize f (x)

subject to aT
i x ≥ bi , i ∈ I,

aT
i x = bi , i ∈ E ,

x ∈ Rn,

where f ∈ C2.

Theorem (First-order necessary optimality conditions)

If x∗ is a local minimizer to (P≥) then x∗ and some λ∗ ∈ Rm

satisfy
(i) aT

i x∗ ≥ bi , i ∈ I, aT
i x∗ = bi , i ∈ E ,

(ii) ∇f (x∗) = ATλ∗,
(iii) λ∗i ≥ 0, i ∈ I, and
(iv) λ∗i (a

T
i x∗ − bi) = 0, i ∈ I.
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Optimality conditions for nonlinear equality constraints

Consider an equality-constrained nonlinear program

(P=)
minimize f (x)

subject to g(x) = 0,
where f , g ∈ C2, g : Rn → Rm.

Let A(x) =


∇g1(x)T

...
∇gm(x)T

.

The linearization of the constraints has to be “sufficiently good”
at x∗ to get optimality conditions analogous to those for linear
constraints.

Definition (Regularity for equality constraints)

A point x∗ ∈ F is regular to (P=) if A(x∗) has full row rank, i.e.,
if ∇gi(x∗), i = 1, . . . , m, are linearly independent.

Regularity allows generalization to nonlinear constraints.
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Necessary optimality conditions, equality constraints

(P=)
minimize f (x)

subject to g(x) = 0,
where f , g ∈ C2, g : Rn → Rm.

Theorem (First-order necessary optimality conditions)

If x∗ is a regular point and a local minimizer to (P=), then
(i) g(x∗) = 0, and
(ii) ∇f (x∗) = A(x∗)Tλ∗ for some λ∗ ∈ Rm.
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Necessary optimality conditions, equality constraints

(P=)
minimize f (x)

subject to g(x) = 0,
where f , g ∈ C2, g : Rn → Rm.

Theorem (Second-order necessary optimality conditions)

If x∗ is a regular point and a local minimizer to (P=), then
(i) g(x∗) = 0, and
(ii) ∇f (x∗) = A(x∗)Tλ∗ for some λ∗ ∈ Rm, and
(iii) Z (x∗)T∇2

xxL(x∗, λ∗)Z (x∗) � 0.

Note that (iii) involves the Lagrangian L(x , λ) = f (x)− λTg(x),
not the objective function.
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Sufficient optimality conditions, equality constraints

(P=)
minimize f (x)

subject to g(x) = 0,
where f , g ∈ C2, g : Rn → Rm.

Theorem (Second-order sufficient optimality conditions)
If
(i) g(x∗) = 0,
(ii) ∇f (x∗) = A(x∗)Tλ∗ for some λ∗ ∈ Rm, and
(iii) Z (x∗)T∇2

xxL(x∗, λ∗)Z (x∗) � 0,
then x∗ is a local minimizer to (P=).
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Necessary optimality conditions, inequality constraints

Assume that we have an inequality-constrained problem

(P≥)
minimize f (x)

subject to g(x) ≥ 0, x ∈ Rn,
where f , g ∈ C2, g : Rn → Rm.

Consider a feasible point x∗. Partition g(x∗) =

(
gA(x∗)
gI(x∗)

)
,

where gA(x∗) = 0 and gI(x∗) > 0. Partition A(x∗) analogously.

Definition (Regularity for inequality constraints)

A point x∗ ∈ Rn which is feasible to (P≥) is regular to (P≥) if
AA(x∗) has full row rank, i.e., if ∇gi(x∗), i ∈ {l : gl(x∗) = 0}, are
linearly independent.
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Necessary optimality conditions, inequality constraints

(P≥)
minimize f (x)

subject to g(x) ≥ 0, x ∈ Rn,
where f , g ∈ C2, g : Rn → Rm.

Theorem (First-order necessary optimality conditions)

If x∗ is a regular point and a local minimizer to (P≥), then
(i) g(x∗) ≥ 0, and
(ii) ∇f (x∗) = AA(x∗)Tλ∗A for some λ∗A ≥ 0.

where AA(x∗) corresponds to the active constraints at x∗.
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Necessary optimality conditions, inequality constraints

(P≥)
minimize f (x)

subject to g(x) ≥ 0, x ∈ Rn,
where f , g ∈ C2, g : Rn → Rm.

Theorem (Second-order necessary optimality conditions)

If x∗ is a regular point and a local minimizer to (P≥), then
(i) g(x∗) ≥ 0, and
(ii) ∇f (x∗) = AA(x∗)Tλ∗A for some λ∗A ≥ 0, and
(iii) ZA(x∗)T∇2

xxL(x∗, λ∗)ZA(x∗) � 0,
where AA(x∗) corresponds to the active constraints at x∗ and
ZA(x∗) is a matrix whose columns form a basis for null(AA(x∗)).

Condition (iii) corresponds to replacing g(x) ≥ 0 with gA(x) = 0.

A. Forsgren: Nonlinear Optimization eVITA Winter School 2009



Sufficient optimality conditions, inequality constraints

(P≥)
minimize f (x)

subject to g(x) ≥ 0, x ∈ Rn,
where f , g ∈ C2, g : Rn → Rm.

Theorem (Second-order sufficient optimality conditions)
If
(i) g(x∗) ≥ 0,
(ii) ∇f (x∗) = AA(x∗)T λ∗A for some λ∗A > 0, and
(iii) ZA(x∗)T∇2

xxL(x∗, λ∗)ZA(x∗) � 0,
then x∗ is a local minimizer to (P≥), where AA(x∗) corresponds
to the active constraints at x∗, and ZA(x∗) is a matrix whose
columns form a basis for null(AA(x∗)).

(Slightly more complicated if λ∗A ≥ 0, λ∗A 6> 0.)

A. Forsgren: Nonlinear Optimization eVITA Winter School 2009



First-order necessary optimality conditions

(P)

minimize f (x)

subject to gi(x) ≥ 0, i ∈ I,
gi(x) = 0, i ∈ E ,
x ∈ Rn,

where f , g ∈ C2, g : Rn → Rm.

Theorem (First-order necessary optimality conditions)

If x∗ is a regular point and a local minimizer to (P), there is a
λ∗ ∈ Rm such that x∗ and λ∗ satisfy
(i) gi(x∗) ≥ 0, i ∈ I, gi(x∗) = 0, i ∈ E ,
(ii) ∇f (x∗) = A(x∗)Tλ∗,
(iii) λ∗i ≥ 0, i ∈ I, and
(iv) λ∗i gi(x∗) = 0, i ∈ I.
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Convexity gives global optimality

(P)
minimize f (x)

subject to gi(x) ≥ 0, i ∈ I, gi(x) = 0, i ∈ E , x ∈ Rn,

where f , g ∈ C2, g : Rn → Rm.

Theorem
Assume that gi , i ∈ I, are concave functions on Rn and gi ,
i ∈ E , are affine functions on Rn. Assume that f is a convex
function on the feasible region of (P). If x∗ ∈ Rm and λ∗ ∈ Rm

satisfy
(i) gi(x∗) ≥ 0, i ∈ I, gi(x∗) = 0, i ∈ E ,
(ii) ∇f (x∗) = A(x∗)Tλ∗,
(iii) λ∗i ≥ 0, i ∈ I, and
(iv) λ∗i gi(x∗) = 0, i ∈ I,

then x∗ is a global minimizer to (P).
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Nonlinear programming is a wide problem class

Consider a binary program (IP) in the form

(IP)

minimize cTx

subject to Ax ≥ b,
xj ∈ {0, 1}, j = 1, . . . , n.

This problem is NP-hard. (Difficult.)
An equivalent formulation of (IP) is

(NLP)

minimize cTx

subject to Ax ≥ b,
xj(1− xj) = 0, j = 1, . . . , n.

To find a global minimizer of (NLP) is equally hard.
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Linear program

A linear program is a convex optimization problem on the form

(LP)

minimize
x∈Rn

cTx

subject to Ax = b,
x ≥ 0.

May be written on many (equivalent) forms.
The feasible set is a polyhedron, i.e., given by the intersection
of a finite number of hyperplanes in Rn.
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Example linear program

min −x1 + x2
subject to −2x1 + x2 ≥ −4,

2x1 − 3x2 ≥ −9,
−4x1 − x2 ≥ −16,
x1 ≥ 0,
x2 ≥ 0.
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Example linear program, cont.

Equivalent linear programs.

minimize −x1 + x2

subject to −2x1 + x2 ≥ −4,
2x1 − 3x2 ≥ −9,
−4x1 − x2 ≥ −16,
x1 ≥ 0,
x2 ≥ 0.

minimize −x1 + x2

subject to −2x1 + x2 − x3 = −4,
2x1 − 3x2 − x4 = −9,
−4x1 − x2 − x5 = −16,
xj ≥ 0, j = 1, . . . , 5.
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Methods for linear programming

We will consider two type of methods for linear programming.

The simplex method.

Combinatoric in its nature.
The iterates are extreme points of the feasible region.

Interior methods.

Approximately follow a trajectory created by a perturbation
of the optimality conditions.
The iterates belong to the relative interior of the feasible
region.
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Linear program and extreme points

Definition
Let S be a convex set. Then x is an extreme point to S if x ∈ S
and there are no y ∈ C, z ∈ C, y 6= x , z 6= x , and α ∈ (0, 1)
such that x = (1− α)y + αz.

(LP)

minimize
x∈Rn

cTx

subject to Ax = b,
x ≥ 0.

Theorem
Assume that (LP) has at least one optimal solution. Then,
there is an optimal solution which is an extreme point.

One way of solving a linear program is to move from extreme
point to extreme point, requiring decrease in the objective
function value. (The simplex method.)
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Linear program extreme points

Proposition

Let S = {x ∈ Rn : Ax = b where A ∈ Rm×n of rank m}.
Then, if x is an extreme point of S, we may partition A = (B N)
(column permuted), where B is m ×m and invertible, and x
conformally, such that(

B N
0 I

)(
xB

xN

)
=

(
b
0

)
, with xB ≥ 0.

Note that xB = B−1b, xN = 0.
We refer to B as a basis matrix.
Extreme points are referred to as basic feasible solutions.
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Optimality of basic feasible solution

Assume that we have a basic feasible solution(
B N
0 I

)(
xB

xN

)
=

(
b
0

)
.

Proposition

The basic feasible solution is optimal if cTpi ≥ 0,
i = 1, . . . , n −m, where pi is given by(

B N
0 I

)(
pi

B

pi
N

)
=

(
0
ei

)
, i = 1, . . . , n −m.

Proof.

If x̃ is feasible, it must hold that x̃ − x =
∑n−m

i=1 γipi , where
γi ≥ 0, i = 1, . . . , n −m. Hence, cT(x̃ − x) ≥ 0.

A. Forsgren: Nonlinear Optimization eVITA Winter School 2009



Test of optimality of basic feasible solution

Note that cTpi may be written as

cTpi =
(

cT
B cT

N

)( B N
0 I

)−1(
0
ei

)
.

Let y and sN solve

(
BT 0
NT I

)(
y
sN

)
=

(
cB

cN

)
.

Then cTpi =
(

yT sT
N

)( 0
ei

)
= (sN)i .

We may compute cTpi , i = 1, . . . , n −m, by solving one system
of equations.
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An iteration in the simplex method

Compute simplex mulipliers y and reduced costs s from(
BT 0
NT I

)(
y
sN

)
=

(
cB

cN

)
.

If (sN)t < 0, compute search direction p from(
B N
0 I

)(
pB

pN

)
=

(
0
et

)
.

Compute maximum steplength αmax and limiting constraint
r from

αmax = min
i:(pB)i<0

(xB)i

−(pB)i
, r = argmin

i:(pB)i<0

(xB)i

−(pB)i
.

Let x = x + αmaxp.
Replace (xN)t = 0 by (xB)r = 0 among the active
constraints.
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An iteration in the simplex method, alternatively

Compute simplex mulipliers y and reduced costs s from

BT y = cB, sN = cN − NTy .

If (sN)t < 0, compute search direction p from

pN = et , BpB = −Nt .

Compute maximum steplength αmax and limiting constraint
r from

αmax = min
i:(pB)i<0

(xB)i

−(pB)i
, r = argmin

i:(pB)i<0

(xB)i

−(pB)i
.

Let x = x + αmaxp.
Replace (xN)t = 0 by (xB)r = 0 among the active
constraints.
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Optimality conditions for linear programming

We want to solve the linear program

(LP)

minimize cTx

subject to Ax = b,
x ≥ 0.

Proposition

A vector x ∈ Rn is optimal to (LP) if and only if there are
y ∈ Rm, s ∈ Rn such that

Ax = b,

x ≥ 0,

ATy + s = c,

s ≥ 0,

sjxj = 0, j = 1, . . . , n.
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The primal-dual nonlinear equations

If the complementarity condition xjsj = 0 is perturbed to
xjsj = µ for a positive barrier parameter µ, we obtain a
nonlinear equation on the form

Ax = b,

ATy + s = c,

xjsj = µ, j = 1, . . . , n.

The inequalities x ≥ 0, s ≥ 0 are kept “implicitly”.

Proposition
The primal-dual nonlinear equations are well defined and have
a unique solution with x > 0 and s > 0 for all µ > 0 if
{x : Ax = b, x > 0} 6= ∅ and {(y , s) : ATy + s = c, s > 0} 6= ∅.

We refer to this solution as x(µ), y(µ) and s(µ).
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The primal-dual nonlinear equations, cont.

The primal-dual nonlinear equations may be written in vector
form:

Ax = b,

ATy + s = c,

XSe = µe,

where X = diag(x), S = diag(s) and e = (1, 1, . . . , 1)T .

Proposition

A solution (x(µ), y(µ), s(µ)) is such that x(µ) is feasible to
(PLP) and y(µ), s(µ) is feasible to (DLP) with duality gap nµ.
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Primal point of view

Primal point of view: x(µ) solves

(Pµ)
minimize cTx − µ

n∑
j=1

ln xj

subject to Ax = b, x > 0,

with y(µ) as Lagrange multiplier vector of Ax = b.
Optimality conditions for (Pµ):

cj −
µ

xj
= AT

j y , j = 1, . . . , n,

Ax = b,

x > 0.
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Dual point of view

Dual point of view: y(µ) and s(µ) solve

(Dµ)
maximize bTy + µ

n∑
j=1

ln sj

subject to ATy + s = c, s > 0,

with x(µ) as Lagrange multiplier vector of ATy + s = c.
Optimality conditions for (Dµ):

b = Ax ,
µ

sj
= xj , j = 1, . . . , n,

ATy + s = c,

s > 0.
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Primal barrier function for example linear program

µ = 5 µ = 1

µ = 0.3 µ = 10−16
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The barrier trajectory

The barrier trajectory is defined as the set
{(x(µ), y(µ), s(µ)) : µ > 0}.
The primal-dual system of nonlinear equations is to prefer.
Pure primal and pure dual point of view gives high nonlinearity.
Example of primal part of barrier trajectory:
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Properties of the barrier trajectory

Theorem
If the barrier trajectory is well defined, then limµ→0 x(µ) = x∗,
limµ→0 y(µ) = y∗, limµ→0 s(µ) = s∗, where x∗ is an optimal
solution to (PLP), and y∗, s∗ are optimal solutions to (DLP).

Hence, the barrier trajectory converges to an optimal solution.

Theorem
If the barrier trajectory is well defined, then limµ→0 x(µ) is the
optimal solution to the problem

minimize −
∑

i∈B ln xi

subject to
∑

i∈B Aixi = b, xi > 0, i ∈ B,

where B = {i : x̃ i > 0 for some optimal solution x̃ of (PLP)}.

Thus, the barrier trajectory converges to an extreme point only
if (PLP) has unique optimal solution.A. Forsgren: Nonlinear Optimization eVITA Winter School 2009



Primal-dual interior method

A primal-dual interior method is based on Newton-iterations on
the perturbed optimality conditions.
For a given point x , y , s, with x > 0 and s > 0 a suitable value
of µ is chosen. The Newton-iteration then becomes A 0 0

0 AT I
S 0 X


 ∆x

∆y
∆s

 = −

 Ax − b
ATy + s − c
XSe − µe

 .

Common choice µ = σ
xTs
n

for some σ ∈ [0, 1].

Note that Ax = b and ATy + s = c need not be satisfied at the
initial point. It will be satisfied at x + ∆x , y + ∆y , s + ∆s.
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An iteration in a primal-dual interior method

1 Choose µ.
2 Compute ∆x , ∆y and ∆s from A 0 0

0 AT I
S 0 X


 ∆x

∆y
∆s

 = −

 Ax − b
ATy + s − c
XSe − µe

 .

3 Find maximum steplength αmax from x + α∆x ≥ 0,
s + α∆s ≥ 0.

4 Let α = min{1, 0.999 · αmax}.
5 Let x = x + α∆x , y = y + α∆y , s = s + α∆s.

(This steplength rule is simplified, and is not guaranteed to
ensure convergence.)
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Strategies for choosing σ

Proposition
Assume that x satisfies Ax = b, x > 0, and assume that y , s
satisfies ATy + s = c, s > 0, and let µ = σxTs/n. Then

(x + α∆x)T(s + α∆s) = (1− α(1− σ))xTs.

It is desirable to have σ small and α large. These goals are in
general contradictory.
Three main strategies:

Short-step method, σ close to 1.
Long-step method, σ significantly smaller than 1.
Predictor-corrector method, σ = 0 each even iteration and
σ = 1 each odd iteration.
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Short-step method

We may choose σk = 1− δ/
√

n, αk = 1.
The iterates remain close to the trajectory.

Polynomial complexity. In general not efficient enough.
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Long-step method

We may choose σk = 0.1, αk given by proximity to the
trajectory.

Polynomial complexity.
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Predictor-corrector method

σk = 0, αk given by proximity to the trajectory for k even.
σk = 1, αk = 1 for k odd.

Polynomial complexity.
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Behavior of interior method for linear programming

Normally few iterations, in the order or 20. Typically does not
grow with problem size.
Sparse systems of linear equations. Example A:

The iterates become more computationally expensive as
problem size increases.
Not clear how to “warm start” the method efficiently.
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On the solution of the linear systems of equation

The aim is to compute ∆x , ∆y and ∆s from A 0 0
0 AT I
S 0 X


 ∆x

∆y
∆s

 = −

 Ax − b
ATy + s − c
XSe − µe

 .

One may for example solve(
X−1S AT

A 0

)(
∆x
−∆y

)
= −

(
c − µX−1e − ATy

Ax − b

)
,

or, alternatively

AXS−1AT ∆y = AXS−1(c − µX−1e − ATy) + b − Ax .

A. Forsgren: Nonlinear Optimization eVITA Winter School 2009



Quadratic programming with equality constraints

Look at model problem with quadratic objective function,

(EQP)

minimize f (x) = 1
2xTHx + cTx

subject to Ax = b,
x ∈ Rn.

We assume that A ∈ Rm×n with rank m.
The first-order optimality conditions become

Hx + c = ATλ,

Ax = b.

This is a system of linear equations.
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Optimality conditions, quadratic program

The first-order necessary optimality conditions may be written(
H AT

A 0

)(
x
−λ

)
=

(
−c

b

)
.

Let Z be a matrix whose columns form a basis for null(A).

Proposition

A point x∗ ∈ Rn is a global minimizer to (EQP) if and only if
there exists a λ∗ ∈ Rm such that(

H AT

A 0

)(
x∗

−λ∗

)
=

(
−c

b

)
and Z THZ � 0.
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Quadratic programming with equality constraints

Alternatively, let x be a given point and p the step to optimum,

(EQP ′)
minimize f (x + p) = 1

2(x + p)TH(x + p) + cT(x + p)

subject to Ap = b − Ax ,
p ∈ Rn.

Proposition

A point x + p∗ ∈ Rn is a global minimizer to (EQP) if and only if
there is λ∗ ∈ Rm such that(

H AT

A 0

)(
p∗

−λ∗

)
= −

(
Hx + c
Ax − b

)
and Z THZ � 0.

Note! Same λ∗ as previously.

A. Forsgren: Nonlinear Optimization eVITA Winter School 2009



The KKT matrix

The matrix K =

(
H AT

A 0

)
is called the KKT matrix.

Proposition
If A 6= 0, then K 6� 0.

This means that K is an indefinite matrix.

Proposition

If Z THZ � 0 and rank(A) = m then K is nonsingular.

If Z THZ � 0 and rank(A) = m then x∗ and λ∗ are unique.
We assume that Z THZ � 0 and rank(A) = m for the
equality-constrained case.
How do we compute x∗ and λ∗?
We prefer (EQP ′) to (EQP).
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Observation related to inequality constraints

Assume that x∗ = x + p∗ and associated λ∗ form optimal
solution to

minimize 1
2xTHx + cTx

subject to Ax = b,
x ∈ Rn,

where H � 0. If λ∗ ≥ 0 then x∗ is also an optimal solution to

minimize 1
2xTHx + cTx

subject to Ax ≥ b,
x ∈ Rn.

This observation is the basis for an active-set method for
solving inequality-constrained quadratic programs.
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Inequality-constrained quadratic programming

Consider the inequality-constrained quadratic program

(IQP)

minimize 1
2xTHx + cTx

subject to Ax ≥ b,
x ∈ Rn.

We assume that H � 0. The problem is then convex.
We have previously considered equality-constrained problems.
Now we must determine the active constraints at the solution.
We will consider two types of method:

Active-set methods. (“Hard” choice.)
Interior methods. (“Soft” choice.)
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Background to active-set method

An active-set method generates feasible points.
Assume that we know a feasible point x̄ . (Solve LP.)
Guess that the constraints active at x̄ are active at x∗ too.
Let A = {l : aT

l x̄ = bl}. The active constraints at x̄ .
LetW ⊆ A be such that AW has full row rank.
Keep (temporarily) the constraints inW active, i.e., solve

(EQPW)

minimize 1
2(x̄ + p)TH(x̄ + p) + cT(x̄ + p)

subject to AWp = 0,
p ∈ Rn.

A. Forsgren: Nonlinear Optimization eVITA Winter School 2009



Solution of equality-constrained subproblem

The problem

(EQPW)

minimize 1
2(x̄ + p)TH(x̄ + p) + cT(x̄ + p)

subject to AWp = 0,
p ∈ Rn.

has, from above, optimal solution p∗ and associate multiplier
vector λ∗W given by(

H AT
W

AW 0

)(
p∗

−λ∗W

)
= −

(
Hx̄ + c

0

)
.

Optimal x∗ associated with (EQPW) is given by x∗ = x̄ + p∗.
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What have we ignored?

When solving (EQPW) instead of (IQP) we have ignored two
things:

1 We have ignored all inactive constraints, i.e., we must
require aT

i x ≥ bi for i 6∈ W.
2 We have ignored that the active constraints are

inequalities, i.e., we have required AWx = bW instead of
AWx ≥ bW .

How are these requirements included?
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Inclusion of inactive constraints

We have started in x̄ and computed search direction p∗.
If A(x̄ + p∗) ≥ b then x̄ + p∗ satisfies all constraints.
Otherwise we can compute the maximum step length αmax
such that A(x̄ + αmaxp∗) ≥ b holds.

The condition is αmax = min
i:aT

i p∗<0

aT
i x̄ − bi

−aT
i p∗

.

Two cases:

αmax ≥ 1. We let x̃ ← x̄ + p∗.
αmax < 1. We let x̃ ← x̄ + αmaxp∗ andW ←W

⋃
{l},

where aT
l (x̄ + αmaxp∗) = bl .

The point x̄ + p∗ is of interest when αmax ≥ 1.
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Inclusion of inequality requirement

We assume that αmax ≥ 1, i.e., Ax̃ ≥ b, where x̃ = x̄ + p∗.
When solving (EQPW) we obtain p∗ and λ∗W . Two cases:

λ∗W ≥ 0. Then x̃ is the optimal solution to

(IQPW)
minimize 1

2xTHx + cTx

subject to AWx ≥ bW , x ∈ Rn,

and hence an optimal solution to (IQP).
λ∗k < 0 for some k . If AWp = ek then
(Hx̃ + c)Tp = λ∗W

T AWp = λ∗k < 0. Therefore, let
W ←W\{k}.
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An iteration in an active-set method for solving (IQP)

Given feasible x̄ andW such that AW has full row rank and
AW x̄ = bW .

1 Solve

(
H AT

W
AW 0

)(
p∗

−λ∗W

)
= −

(
Hx̄ + c

0

)
.

2 l ← index for constraint first becomes violated along p∗.
3 αmax ← maximum step length along p∗.
4 If αmax < 1, let x̄ ← x̄ + αmaxp∗ andW ←W

⋃
{l}. New

iteration.
5 Otherwise, αmax ≥ 1. Let x̄ ← x̄ + p∗.
6 If λ∗W ≥ 0 then x̄ is optimal. Done!
7 Otherwise, λ∗k < 0 for some k . LetW ←W\{k}. New

iteration.
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Example problem

Consider the following two-dimensional example problem.

minimize x2
1 + x1x2 + 2x2

2 − 3x1 − 36x2

subject to x1 ≥ 0,
x2 ≥ 0,
−x1 − x2 ≥ −7,
x1 − 5x2 ≥ −25.
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Geometric illustration of example problem
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Optimal solution to example problem

Assume that we want to solve the example problem by an
active-set method.
Initial point x = (5 0)T .
We may initially chooseW = {2} orW = {0}.

Optimal solution x∗ =
(15

32 5 3
32

)T
with λ∗ =

(
0 0 0 3 1

32

)T
.

A. Forsgren: Nonlinear Optimization eVITA Winter School 2009



Comments on active-set method

Active-set method for quadratic programming:

“Inexpensive” iterations. Only one constraint is added to or
deleted fromW.
AW maintains full row rank.
Straightforward modification to the case H � 0. (For H = 0
we get the simplex method if the initial point is a vertex.)
May potentially require an exponential number of iterations.
May cycle (in theory). Anti-cycling strategy as in the
simplex method.
May be “warm started” efficiently if the initial point has
“almost correct” active constraints.
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Interior method for quadratic programming

(IQP)

minimize 1
2xTHx + cTx

subject to Ax ≥ b,
x ∈ Rn.

We assume that H � 0. Then, the problem is convex.

An interior method for solving (IQP) approximately follows
the barrier trajectory, which is created by a perturbation of
the optimality conditions.
To understand the method, we first consider the trajectory.
Thereafter we study the method.
The focus is on primal-dual interior methods.
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Optimality conditions for (IQP)

(IQP)

minimize 1
2xTHx + cTx

subject to Ax ≥ b,
x ∈ Rn.

We assume that H � 0. Then, the problem is convex.
The optimality conditions for (IQP) may be written as

Ax − s = b,

Hx − ATλ = −c,

siλi = 0, i = 1, . . . , m,

s ≥ 0,

λ ≥ 0.
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The primal-dual nonlinear equations

If the complementarity conditions siλi = 0 are perturbed to
siλi = µ for a positive parameter µ, we obtain the primal-dual
nonlinear equations

Ax − s = b,

Hx − ATλ = −c,

siλi = µ, i = 1, . . . , m.

The inequalities s ≥ 0, λ ≥ 0, are kept “implicitly”.
The parameter µ is called the barrier parameter.

Proposition
The primal-dual nonlinear equations are well defined and have
a unique solution with s > 0 and λ > 0 for all µ > 0 if H � 0,
{(x , s, λ) : Ax − s = b, Hx − ATλ = −c, s > 0, λ > 0} 6= ∅.

We refer to this solution as x(µ), s(µ) and λ(µ).
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The primal-dual nonlinear equations, cont.

The primal-dual nonlinear equations may be written on vector
form:

Ax − s = b,

Hx − ATλ = −c,

SΛe = µe,

where S = diag(s), Λ = diag(λ) and e = (1, 1, . . . , 1)T .
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Primal point of view

Primal point of view: x(µ), s(µ) solve

(Pµ)
minimize 1

2xTHx + cTx − µ

m∑
i=1

ln si

subject to Ax − s = b, s > 0,

with λ(µ) as Lagrange multipliers of Ax − s = b.
Optimality conditions for (Pµ):

Ax − s = b,

Hx + c = ATλ,

− µ

si
= −λi , i = 1, . . . , m,

s > 0.
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The barrier trajectory

The barrier trajectory is defined as the set
{(x(µ), s(µ), λ(µ)) : µ > 0}.
We prefer the primal-dual nonlinear equations to the primal. A
pure primal point of view gives high nonlinearity.

Theorem
If the barrier trajectory is well defined, it holds that
limµ→0 x(µ) = x∗, limµ→0 s(µ) = s∗, limµ→0 λ(µ) = λ∗, where x∗

is an optimal solution to (IQP), and λ∗ is the associated
Lagrange multiplier vector.

Hence, the barrier trajectory converges to an optimal solution.
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Example problem

Consider the following two-dimensional example problem.

minimize x2
1 + x1x2 + 2x2

2 − 3x1 − 36x2

subject to x1 ≥ 0,
x2 ≥ 0,
−x1 − x2 ≥ −7,
x1 − 5x2 ≥ −25.
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Geometric illustration of example problem
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Illustration of primal barrier problem
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Illustration of primal part of barrier trajectory

An interior method approximately follows the barrier trajectory.
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A primal-dual interior method

A primal-dual interior method is based on Newton iterations on
the perturbed optimality conditions.
For a given point x , s, λ, with s > 0 and λ > 0, a suitable value
of µ is chosen. The Newton iteration then becomes H 0 −AT

A −I 0
0 Λ S


 ∆x

∆s
∆λ

 = −

 Hx + c − ATλ

Ax − s − b
SΛe − µe

 .

Note that Ax − s = b and Hx − ATλ = −c need not be satisfied
at the initial point. Satisfied at x + ∆x , s + ∆s, λ + ∆λ.
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An iteration in a primal-dual interior method

1 Select a value for µ.
2 Compute the directions ∆x , ∆s and ∆λ from H 0 −AT

A −I 0
0 Λ S


 ∆x

∆s
∆λ

 = −

 Hx + c − ATλ

Ax − s − b
SΛe − µe

 .

3 Compute the maximum steplength αmax from s + α∆s ≥ 0,
λ + α∆λ ≥ 0.

4 Let α be a suitable step, α = min{1, ηαmax}, where η < 1.
5 Let x = x + α∆x , s = s + α∆s, λ = λ + α∆λ.
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Behavior of interior method

Normally rather few iterations on a quadratic program.
(Depends on the strategy for reducing µ). The number of
iterations does typically not increase significantly with problem
size.
The Newton iteration may be written(

H AT

A −SΛ−1

)(
∆x
−∆λ

)
= −

(
Hx + c − ATλ

Ax − b − µΛ−1e

)
.

Symmetric indefinite matrix. Sparse matrix if H and A are
sparse.
Unclear how to “warm start” the method efficiently.
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Solution methods

Solution methods are typically iterative methods that solve
a sequence of simpler problems.
Methods differ in terms of how complex subproblems that
are formed.
Many methods exist, e.g., interior methods, sequential
quadratic programming methods etc.
Rule of thumb: Second-derivatives are useful.
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Two important classes of solution methods

Sequential-quadratic programming (SQP) methods.

Local quadratic models of the problem are made.
Subproblem is a constrained quadratic program.
“Hard” prediction of active constraints.
Subproblem may be warmstarted.

Interior methods.

Linearizations of perturbed optimality conditions are made.
Subproblem is a system of linear equations.
“Soft” prediction of active constraints.
Warm start is not easy.
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Derivative information

First-derivative methods are often not efficient enough.
SQP methods and interior methods are second-derivative
methods.
An alternative to exact second derivatives are
quasi-Newton methods.
Stronger convergence properties for exact second
derivatives.
Exact second derivatives expected to be more efficient in
practice.
Exact second derivatives requires handling of
nonconvexity.
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Optimality conditions for nonlinear programs

Consider an equality-constrained nonlinear programming
problem

(P=)
minimize f (x)

subject to g(x) = 0,
where f , g ∈ C2, g : Rn → Rm.

If the Lagrangian function is defined as L(x , λ) = f (x)− λTg(x),
the first-order optimality conditions are ∇L(x , λ) = 0. We write
them as(

∇xL(x , λ)

−∇λL(x , λ)

)
=

(
∇f (x)− A(x)Tλ

g(x)

)
=

(
0
0

)
,

where A(x)T =
(
∇g1(x) ∇g2(x) · · · ∇gm(x)

)
.
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Newton’s method for solving a nonlinear equation

Consider solving the nonlinear equation ∇f (u) = 0, where
f : Rn → R, f ∈ C2.
Then, ∇f (u + p) = ∇f (u) +∇2f (u)p + o(‖p‖).
Linearization given by ∇f (u) +∇2f (u)p.
Choose p so that ∇f (u) +∇2f (u)p = 0, i.e., solve
∇2f (u)p = −∇f (u).
A Newton iteration takes the following form for a given u.

p solves ∇2f (u)p = −∇f (u).
u ← u + p.

(The nonlinear equation need not be a gradient.)
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Speed of convergence for Newton’s method

Theorem

Assume that f ∈ C3 and that ∇f (u∗) = 0 with ∇2f (u∗)
nonsingular. Then, if Newton’s method (with steplength one) is
started at a point sufficiently close to u∗, then it is well defined
and converges to u∗ with convergence rate at least two, i.e.,
there is a constant C such that ‖uk+1 − u∗‖ ≤ C‖uk − u∗‖2.

The proof can be given by studying a Taylor-series expansion,

uk+1 − u∗ = uk −∇2f (uk )−1∇f (uk )− u∗

= ∇2f (uk )−1(∇f (u∗)−∇f (uk )−∇2f (uk )(u∗ − uk )).

For uk sufficiently close to u∗,

‖∇f (u∗)−∇f (uk )−∇2f (uk )(u∗ − uk )‖ ≤ C̄‖uk − u∗‖2.

A. Forsgren: Nonlinear Optimization eVITA Winter School 2009



First-order optimality conditions

The first-order necessary optimality conditions may be viewed
as a system of n + m nonlinear equations with n + m
unknowns, x and λ, according to(

∇f (x)− A(x)Tλ

g(x)

)
=

(
0
0

)
,

A Newton iteration takes the form

(
x+

λ+

)
=

(
x
λ

)
+

(
p
ν

)
,

where(
∇2

xxL(x , λ) −A(x)T

A(x) 0

)(
p
ν

)
=

(
−∇f (x) + A(x)Tλ

−g(x)

)
,

for L(x , λ) = f (x)− λTg(x).
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First-order optimality conditions, cont.

The resulting Newton system may equivalently be written as(
∇2

xxL(x , λ) −A(x)T

A(x) 0

)(
p

λ + ν

)
=

(
−∇f (x)

−g(x)

)
,

alternatively(
∇2

xxL(x , λ) A(x)T

A(x) 0

)(
p
−λ+

)
=

(
−∇f (x)

−g(x)

)
.

We prefer the form with λ+, since it can be directly generalized
to problems with inequality constraints.
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Quadratic programming with equality constraints

Compare with an equality-constrained quadratic programming
problem

(EQP)

minimize 1
2pTHp + cTp

subject to Ap = b,
p ∈ Rn,

where the unique optimal solution p and multiplier vector λ+

are given by (
H AT

A 0

)(
p
−λ+

)
=

(
−c

b

)
,

if Z THZ � 0 and A has full row rank.
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Newton iteration and equality-constrained QP

Compare

(
∇2

xxL(x , λ) A(x)T

A(x) 0

)(
p
−λ+

)
=

(
−∇f (x)

−g(x)

)

with

(
H AT

A 0

)(
p
−λ+

)
=

(
−c

b

)
.

Identify:

∇2
xxL(x , λ) ←→ H
∇f (x) ←→ c
A(x) ←→ A
−g(x) ←→ b.
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Newton iteration as a QP problem

A Newton iteration for solving the first-order necessary
optimality conditions to (P=) may be viewed as solving the QP
problem

(QP=)

minimize 1
2pT∇2

xxL(x , λ)p +∇f (x)Tp

subject to A(x)p = −g(x),
p ∈ Rn,

and letting x+ = x + p, and λ+ are given by the multipliers of
(QP=).
Problem (QP=) is well defined with unique optimal solution p
and multiplier vector λ+ if Z (x)T∇2

xxL(x , λ)Z (x) � 0 and A(x)
has full row rank, where Z (x) is a matrix whose columns form a
basis for null(A(x)).
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An SQP iteration for problems with equality constraints

Given x , λ such that Z (x)T∇2
xxL(x , λ)Z (x) � 0 and A(x) has

full row rank, a Newton iteration takes the following form.

1 Compute optimal solution p and multiplier vector λ+ to

(QP=)

minimize 1
2pT∇2

xxL(x , λ)p +∇f (x)Tp

subject to A(x)p = −g(x),
p ∈ Rn,

2 x ← x + p, λ← λ+.

We call this method sequential quadratic programming (SQP).
Note! (QP=) is solved by solving a system of linear equations.
Note! x and λ have given numerical values in (QP=).
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SQP method for equality-constrained problems

So far we have discussed SQP for (P=) in an “ideal” case.
Comments:

If Z (x)T∇2
xxL(x , λ)Z (x) 6� 0 we may replace ∇2

xxL(x , λ)
by B in (QP=), where B is a symmetric approximation of
∇2

xxL(x , λ) that satisfies Z (x)TBZ (x) � 0.
A quasi-Newton approximation B of ∇2

xxL(x , λ) may be
used.
If A(x) does not have full row rank A(x)p = −g(x) may
lack solution. This may be overcome by introducing
“elastic” variables. This is not covered here.
We have shown local convergence properties. To obtain
convergence from an arbitrary initial point we may utilize a
merit function and use linesearch.
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Enforcing convergence by a linesearch strategy

Compute optimal solution p and multiplier vector λ+ to

(QP=)

minimize 1
2pT∇2

xxL(x , λ)p +∇f (x)Tp

subject to A(x)p = −g(x),
p ∈ Rn,

x ← x + αp, where α is determined in a linesearch to give
sufficient decrease of a merit function.
(Ideally, α = 1 eventually.)
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Example of merit function for SQP on (P=)

A merit function typically consists of a weighting of optimality
and feasibility. An example is the augmented Lagrangian merit

function Mµ(x) = f (x)− λ(x)Tg(x) +
1

2µ
g(x)Tg(x), where µ is a

positive parameter and λ(x) = (A(x)A(x)T )−1A(x)∇f (x). (The
vector λ(x) is here the least-squares solution of
A(x)Tλ = ∇f (x).)
Then the SQP solution p is a descent direction to Mµ at x if µ is
sufficiently close to zero and Z (x)TBZ (x) � 0.
We may then carry out a linesearch on Mµ in the x-direction
and define λ(x) = (A(x)A(x)T )−1A(x)∇f (x).
Ideally the step length is chosen as α = 1.
We consider the “pure” method, where α = 1 and λ+ is given
by (QP=).
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SQP for inequality-constrained problems

In the SQP subproblem (QP=), the constraints are
approximated by a linearization around x , i.e., the
requirement on p is gi(x) +∇gi(x)Tp = 0, i = 1, . . . , m.
For an inequality constraint gi(x) ≥ 0 this requirement may
be generalized to gi(x) +∇gi(x)Tp ≥ 0.
An SQP method gives in each iteration a prediction of the
active constraints in (P) by the constraints that are active
in the SQP subproblem.
The QP subproblem gives nonnegative multipliers for the
inequality constraints.
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The SQP subproblem for a nonlinear program

The problem

(P)

minimize f (x)

subject to gi(x) ≥ 0, i ∈ I,
gi(x) = 0, i ∈ E ,
x ∈ Rn,

where f , g ∈ C2, g : Rn → Rm,

has, at a certain point x , λ, an SQP subproblem

(QP)

minimize 1
2pT∇2

xxL(x , λ)p +∇f (x)Tp

subject to ∇gi(x)Tp ≥ −gi(x), i ∈ I,
∇gi(x)Tp = −gi(x), i ∈ E ,
p ∈ Rn,

which has optimal solution p and Lagrange multiplier vector λ+.
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An SQP iteration for nonlinear optimization problem

Given x , λ such that ∇2
xxL(x , λ) � 0, an SQP iteration for (P)

takes the following form.

1 Compute optimal solution p and multiplier vector λ+ to

(QP)

minimize 1
2pT∇2

xxL(x , λ)p +∇f (x)Tp

subject to ∇gi(x)Tp ≥ −gi(x), i ∈ I,
∇gi(x)Tp = −gi(x), i ∈ E ,
p ∈ Rn.

2 x ← x + p, λ← λ+.

Note that λi ≥ 0, i ∈ I, is maintained since λ+ are Lagrange
multipliers to (QP).

A. Forsgren: Nonlinear Optimization eVITA Winter School 2009



SQP method for nonlinear optimization

We have discussed the “ideal” case. Comments:

If ∇2
xxL(x , λ) 6� 0, we may replace ∇2

xxL(x , λ) by B in
(QP), where B is a symmetric approximation of
∇2

xxL(x , λ) that satisfies B � 0.
A quasi-Newton approximation B of ∇2

xxL(x , λ) may be
used. (Example SQP quasi-Newton solver: SNOPT.)
The QP subproblem may lack feasible solutions. This may
be overcome by introducing “elastic” variables. This is not
covered here.
We have shown local convergence properties. To obtain
convergence from an arbitrary initial point we may utilize a
merit function and use linesearch or trust-region strategy.
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Example problem

Consider small example problem

(P)

minimize
1
2
(x1 + 1)2 +

1
2
(x2 + 2)2

subject to −3(x1 + x2 − 2)2 − (x1 − x2)
2 + 6 = 0,

x1 ≥ 0,
x2 ≥ 0,

x ∈ R2.

Optimal solution x∗ ≈ (0.5767 0.0431)T , λ∗1 ≈ 0.2185.
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Graphical illustration of example problem

Optimal solution x∗ ≈ (0.5767 0.0431)T , λ∗1 ≈ 0.2185.
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Barrier function for general nonlinear problem

Consider an inequality-constrained problem

(P≥)
minimize f (x)

subject to g(x) ≥ 0,
where f , g ∈ C2, g : Rn → Rm.

We assume {x ∈ Rn : g(x) > 0} 6= ∅ and require g(x) > 0
“implicitly”.
For a positive parameter µ, form the logarithmic barrier function

Bµ(x) = f (x)− µ

m∑
i=1

ln gi(x).

Necessary conditions for a minimizer of Bµ(x) are ∇Bµ(x) = 0,
where

∇Bµ(x) = ∇f (x)−µ

m∑
i=1

1
gi(x)

∇gi(x) = ∇f (x)−µA(x)TG(x)−1e,

with G(x) = diag(g(x)) and e = (1 1 . . . 1)T .
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Barrier function for general nonlinear problem, cont.

If x(µ) is a local minimizer of minx :g(x)>0 Bµ(x) it holds that
∇f (x(µ))− µA(x(µ))TG(x(µ))−1e = 0.

Proposition

Let x(µ) be a local minimizer of minx :g(x)>0 Bµ(x). Under
suitable conditions, it holds that

lim
µ→0

x(µ) = x∗, lim
µ→0

µG(x(µ))−1e = λ∗,

where x∗ is a local minimizer of (P≥) and λ∗ is the associated
Lagrange multiplier vector.

Note! It holds that g(x(µ)) > 0.
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Barrier function for general nonlinear problem, cont.

Let λ(µ) = µG(x(µ))−1e, i.e., λi(µ) =
µ

gi(x(µ))
, i = 1, . . . , m.

Then, ∇Bµ(x(µ)) = 0 ⇐⇒ ∇f (x(µ))− A(x(µ))Tλ(µ) = 0.
This means that x(µ) and λ(µ) solve the nonlinear equation

∇f (x)− A(x)Tλ = 0,

λi −
µ

gi(x)
= 0, i = 1, . . . , m,

where we in addition require g(x) > 0 and λ > 0. If the second
block of equations is multiplied by G(x) we obtain

∇f (x)− A(x)Tλ = 0,

gi(x)λi − µ = 0, i = 1, . . . , m.

A perturbation of the first-order necessary optimality conditions.
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Barrier function method

A barrier function method approximately finds x(µ), λ(µ) for
decreasing values of µ.
A primal-dual method takes Newton iterations on the
primal-dual nonlinear equations

∇f (x)− A(x)Tλ = 0,

G(x)λ− µe = 0.

The Newton step ∆x , ∆λ is given by(
∇2

xxL(x , λ) A(x)T

ΛA(x) −G(x)

)(
∆x
−∆λ

)
= −

(
∇f (x)− A(x)Tλ

G(x)λ− µe

)
,

where Λ = diag(λ).

A. Forsgren: Nonlinear Optimization eVITA Winter School 2009



An iteration in a primal-dual barrier function method

An iteration in a primal-dual barrier function method takes the
following form, given µ > 0, x such that g(x) > 0 and λ > 0.

1 Compute ∆x , ∆λ from(
∇2

xxL(x , λ) A(x)T

ΛA(x) −G(x)

)(
∆x
−∆λ

)
= −

(
∇f (x)− A(x)Tλ

G(x)λ− µe

)
.

2 Choose “suitable” steplength α such that g(x + α∆x) > 0,
λ + α∆λ > 0.

3 x ← x + α∆x , λ← λ + α∆λ.
4 If (x , λ) “sufficiently close” to (x(µ), λ(µ)), reduce µ.
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Radiation therapy

Treatment of cancer is a very important task.
Radiation therapy is one of the most powerful methods of
treatment. In Sweden 30% of the cancer patients are
treated with radiation therapy.
The radiation may be optimized to improve performance of
radiation.
Hence, behind this important medical application is an
optimization problem.

A. Forsgren: Nonlinear Optimization eVITA Winter School 2009



Radiation treatment
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Aim of radiation

The aim of the radiation is typically to give a treatment that
leads to a desirable dose distribution in the patient.
Typically, high dose is desired in the tumor cells, and low
dose in the other cells.
In particular, certain organs are very sensitive to radiation
and must have a low dose level, e.g., the spine.
Hence, a desired dose distribution can be specified, and
the question is how to achieve this distribution.
This is an inverse problem in that the desired result of the
radiation is known, but the treatment plan has to be
designed.
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Formulation of optimization problem

A radiation treatment is typically given as a series of
radiations.
For an individual treatment, the performance depends on

the beam angle of incidence, which is governed by the
supporting gantry; and
the intensity modulation of the beam, which is governed by
the treatment head.

One may now formulate an optimization problem, where
the variables are the beam angles of incidence and the
intensity modulations of the beams.
In this talk, we assume that the beam angles of incidence
are fixed.
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Optimization of radiation therapy

Joint research project between
KTH and RaySearch Laboratories AB.

Financially supported by the Swedish Research Council.

Previous industrial graduate student: Fredrik Carlsson. (PhD
April 2008)

Current industrial graduate students: Rasmus Bokrantz and
Albin Fredriksson.
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Solution method

A simplified bound-constrained problem may be posed as

minimize
x∈Rn

f (x)

subject to l ≤ x ≤ u.

Large-scale problem solved in few (˜20) iterations using a
quasi-Newton SQP method.
Difficulty: “Jagged” solutions for more accurate plans.
Idea: Use second-derivatives and an interior method to
obtain fast convergence and smooth solutions.

Good news: Faster convergence.
Bad news: Increased jaggedness.

Not following the folklore.
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Radiation therapy and the conjugate-gradient method

Why does a quasi-Newton sequential quadratic
programming method do so well on these problems?
The answer lies in the problem structure.
Simplify further, consider a quadratic approximation of the
objective function and eliminate the constraints.

minimize
x∈Rn

1
2xTHx + cTx

where H = HT � 0.
Quasi-Newton methods and the conjugate-gradient
method are equivalent on this problem.
The conjugate-gradient method minimizes in directions
corresponding to large eigenvalues first.
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Radiation therapy and the conjugate-gradient method

The conjugate-gradient method minimizes in directions
corresponding to large eigenvalues first.
Our simplified problem has few large eigenvalues,
corresponding to smooth solutions.
Many small eigenvalues that correspond to jagged
solutions.
The conjugate-gradient method takes a desirable path to
the solution.
Additional properties of the solution, not seen in the
formulation, are important.
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Behavior of the conjugate gradient subproblems

minimize
ξ∈Rn,ζ∈Rk

1
2

n∑
i=1

λiξ
2
i

subject to ξi =
k∏

l=1

(
1− λi

ζl

)
ξ
(0)
i , i = 1, . . . , n,

The optimal solution ξ(k) will tend to have smaller components
ξ
(k)
i for i such that λi is large and/or ξ

(0)
i is large.

Nonlinear dependency of ξ(k) on λ and ξ(0).
We are interested in the ill-conditioned case, when H has
relatively few large eigenvalues.
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Polynomials for ill-conditioned example problem

Polynomials for problem
with
λ = (2, 1.5, 1, 0.1, 0.01)T

and ξ(0) = (1, 1, 1, 1, 1)T .

Polynomials for problem
with λ = (2, 1.5, 1)T and
ξ(0) = (1, 1, 1)T .
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Optimization approaches to distributed
multi-cell radio resource management

Research project within the
KTH Center for Industrial and Applied Mathematics (CIAM).

Industrial partner: Ericsson.

Financially supported by the
Swedish Foundation for Strategic Research.

Graduate student: Mikael Fallgren.
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Radio resource management
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Optimization problem

Maximize throughput.
Nonconvex problem.
Convexification possible.
Leads to loss of separability.

Question: How is this problem best solved?
Research in progress.
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Some personal comments

A personal view on nonlinear optimization.

Methods are very important.
Applications give new challenges.
Often two-way communication between method and
application.
Collaboration with application experts extremely important.

Thank you for your attention!
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Conference announcement

3rd Nordic Optimization Symposium
March 13–14 2009

KTH, Stockholm

See http://www.math.kth.se/optsyst/3nos

Welcome!
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