
Convex optimization

François Glineur

francois.glineur@uclouvain.be
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Optimization is

min
x∈Rn

f(x) such that x ∈ X ⊆ Rn

� Very general: numerous applications including engineering, supply chain
management, economics, etc.

� Too general: cannot expect any algorithm to be guaranteed to solve all
problem in this class

Therefore we study a subset of optimization problems for which algorithms with
such guarantees can be designed:

Convex Optimization

where f is and X is
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min
x∈Rn

f(x) such that x ∈ X ⊆ Rn with f convex, X convex

What do we get in return ?

� Recognizing (global) optimal solutions becomes easy

� Efficient algorithms (both in theory and in practice): interior-point methods
Polynomial-time algorithmic complexity for (nearly) all common convex
optimization problems:

O
(√
ν log 1

ε

)
iterations to achieve ε accuracy

where ν is a measure of the problem size

� Duality: existence of another strongly related dual problem,
a maximization problem with the same optimal value

I How to check that solution to Ax = b is correct ? Plug x into equation
I How to check that a solution to an optimization problem is correct ? . . .

Use duality : exhibit a solution of the dual → checkable optimality certificate

Examples: Linear optimization, (convex) quadratic optimization, semidefinite
optimization, geometric optimization, sum-of-norm optimization, etc.
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Thanks for you attention
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