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Agenda (wednesday 15-16:30, 16:30-18:30)

= Applications — introduction
= Modeling and standard models
= Solution methods

= Applications — revisited
— Results/Impacts

= Case (If time)
= Concluding comments



Objective

» Understanding of the main solution approaches for
discrete optimization and their characteristics.

» Understanding of modeling and standard discrete
optimization models.

* |nsights in some applications and how discrete
optimization can be used to solve them.



Seminar based on material from

= J. Lundgren, M. Ronngvist and P. Varbrand, Optimeringslara,
Studentlitteratur, Sweden, 537 pages, 2008. (English version
available during Spring 2009)

— P. Eveborn, M. Rénngvist, M. Almroth, M. Eklund, H. Einarsdoéttir and K. Lidén,
Operations Research (O.R.) Improves Quality and Efficiency in Home Care, to
appear in Interfaces

— H. Gunnarsson, M. Rénnqvist and D. Carlsson, A combined terminal location and
ship routing problem, Journal of the Operational Research Society, Vol. 57, 928-
938, 2006.

— D. Bredstrom, J. T. Lundgren, M. Ronngvist, D. Carlsson and A. Mason, Supply
chain optimization in the pulp mill industry — IP models, column generation and
novel constraint branches, European Journal of Operational Research, Vol 156,
pp 2-22, 2004.

— H. Broman, M. Frisk and M. Roénnqvist, Supply chain planning of harvest
operations and transportation after the storm Gudrun, to appear in INFOR



Applications



Applications

= Paper roll cutting

= 2D - Board cutting

= Terminal location

» Production planning
= Routing/ Scheduling
= Game



Paper roll cutting



Roll cutting at paper mills

Length: 30,000 meters
Trim loss Width: 5-10 meters
Products: 0.3-1.0 m
Roll: 5,000 meters
Fixed demand
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2D Board cutting



Defect areas
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Products

Weighted area of products determines the board’s quality/value



Terminal location



Case: Sodra Cell - mills

 Fell BT

Sodra Cell in total
Capacity: ~2 million ton
Wood: ~9 million cu.m.

*cu.m. = cubic meters, solid under bark



Customers

Terminaler

e Terminals
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Production planning



Supply chain structure
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roduction plans
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Home care operations



Headlines in Swedish newspapers

= “Anna, 89, found dead after missed home care
services.”

= “My mother met 57 different persons from the
home care services during the last two months.”

= “Sick leave among staff members above 30
percent in the elderly care.”



THE CITY OF STOCKHOLM

m\\ ncy In Home Care

. A background

City of Stockholm: 2 million

in the region and 794,000 in
town

Long tradition in providing
Social Care “Cutting edge”
methods and alternatives in
Home Care

Growing number of elderly
citizens with rising costs

Great need for better and
more effective organisation
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Sudoku



Sudoku

= Given Initial data
= Fill digits 1-9 into

boxes such that
= Every digit 1-9 7

appears in every

row, column, and
3x3 box 9
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Modeling



Formulating the right model is crucial in integer programming.

Laurence Wolsey



An integer programming problem is a problem where one or several

ariables are restricted to integer values. It is more correct to say
that we have discrete variables i.e. they can only take a set
of discrete values. Examples on discrete variables are:

r; €4{0,1,2,3,4,5,6}
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The optimal solution is X}; , = (4 3)* with 25, = 7.
If we remove the requirement on integer solution we get the LP-relaxation.
The optimal LP-relaxation is x} » = (6 5.5)7 with 2} , = 11.5.



z = 9%, +10x,
2%+ 3X, £ 6
X, <2
X, X, >0, integer

max
IP-opt St
X:IP:(O 2)T
/ z,,=20

LP-opt
Xip =(2 %)T

® Zip= 24%

O O | =

1 2 3 X

Z,, 22, (maxproblem)




General IP

max (min) z = » C,X;
s.t. Y ax; <b,i=1.,m
All variables integer C——)> PureIP

Some variables integer —>  Mixed IP
Binary variables (0 or 1)C——> 0/1 - problem



Example (fixed cost)

Production of a product A is done in a machine where the direct cost is pro-
portional to the amount produced. At the start there is a need to configure the
machine and this takes a given time and has a fixed cost. The total cost is hence
a combination of a fixed cost f and a moving cost c4 for each unit. The cost is

0 in case of no production. Suppose that x4 denote the number of A produced.
The total cost is then

fcra ifra>0 . Total cost
(), otherwise

2= fy+cara £l
T A M (¥ f+'::£{.q
T 4
y € {0,1}




Example (non-convex area)

Suppose we have a problem where the feasible points are defined
as laying in area 1 or area 2 (or alternatively in both). The areas
are defined as

Area 1: Area 2:
Ty =< 3 —r1+19 < 0
r1+ax < 4 3ry— Iy < 8
r1.1r9 = 0 r1. 19 = 0
%
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Solution: We introduce two 0/1 variables as

{ 1
Yi =

0. otherwise

h
L

. if the point is in area 1,

1=1,2
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Describe the non-convex function below in a model.
f(x)
L
50 1
40 1 /

30 1
201

107

Solution: Firstly we identify the break points (inclusive the end

points) j = 1.....5 in the function and the segments between

1 =1.....4. We introduce the variables
_E B 1, if segment i is used , +=1,...,4
Yi 0. otherwise
w; = weight for break point j, j=1,....5



The function can now be expressed with the constraints

f(x)
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Convex hull

I
5 —r1+ 20 < 5
XHgp = 91 +bxy < 33
41 r1 = 0,z9 = 0, integer
3 |
,..-—”"J
2 - .
—r1 +x2 <2
| ry < 3
L 201 +x9 < T
Ty < 3
ry, xr2 = 0




Example strong formulation

min z = 2x,+3X, +6y, +3Y,
S.t. x1+x2 > 5
< My,
, < My,
X, X, 2 0
Y1, ¥, €10, 1}
LP-relaxation
M =100= X, =5, ¥, = %5, Z,p =10.3
M=10 =x,=5 vy,=%, z,,=13
M=5 =x=5vy=1 1z,=16

Choose M as small as possible

Optimum:

X, =9, X, =0
=1 y,=0
z =16

Note! M must be large
enough. Otherwise, the
Optimum Is cut away.



Standard models



Standard IP models

= Knapsack problem

» Generalized Assignment Problem (GAP)
= Faclility location problem

= Mixed Integer Programming (MIP)

= Set partitioning problem (SPP)



Knapsack problem

To state the general model we introduce the variables
1. if object j is chosen, 7 =1,.. ., n

X ' X '

J 0, otherwise

and the parameters

¢; = value if object j is chosen
a; = resource usage if object j is chosen
b = resource limitation

The general model for a 0/1 knapsack problem is

o
max 2 = Z CjT;
j=1
TL
s.t. Z ajr; < b
=1
r; € {01}, j=1,..., n

An alternative to define the variables is to use general integer
variables. The only difference is that we swap z; € {0, 1} against
r; = 0, integer



Suppose we want to solve a 0/1 knapsack problem with 10 vari-
ables. Furthermore, suppose that it takes a computer 107°% sec-
onds to state a solution, check feasibility and then compute the
objective function value. There are 2!V potential solutions (com-
binations of 0 and 1 for each variable) and the total time to test
all alternatives and select the best is approximately 0.001 seconds.

If we instead study a problem with 50 variables the total approxi-

. . C o 250 VoL y ; .
mate solution time is 37 years (3zz 5573600/ for the same computer.
T'he solution time increases exponentially which also explains the
complexity with IP problems. If we add one more variable to 51
the total solution time will double i.e. 74 years ....

and we should have in mind that practical IP problems may
have thousands even millions of integer variables!



Generalized assigcnment problem

a;; = usage of resource if machine i is allocated job j
c;; = costif machine 7 is allocated job j
b; = capacity of machine i
1, 1f machine 7 is allocated job j
;s = . : ;
Y 0, otherwise.z €I, j& J

min 2z = E E Cii T

el ged
S.t. Za?’_jﬁ:ij < b, e 1
jed
Z:z:.z—_j = 1, jeJ
el

vi; € {0,1}, iel, jel



Job  Time-M1 Time-M2 Cost-M1 Cost-M2

I 18 20 24 18
2 21 16 16 21
3 14 9 18 14
4 19 17 10 12
5 17 12 17 26
6 10 19 21 13

min z = 24xyy + 1629 + 18213 + 1024 + 17215 + 21216+
18291 + 2199 + 14wos + 12294 4+ 26225 + 18294
s.t. 182y + 21xy0 + 14wy + 19214 + 17215 + 1025
20291 4 16299 + 993 + 17x04 + 12795 + 19194
T11 + T91
T12 + T92
T3 + o3
T1g T T2y
U5 T T25
T T L6

ri,; €401}, i=1,2:5=1,....,6

I IAIA

— = = = = = e O

! - _— : - . L. T e . ek . I I -
The optimal solution is =7, = xj; = ¥]; = x5 = vd, = 25, = 1,
other variables are x7; = 0, with objective function value 2* = 101.
This means that jobs 1, 2 and 3 is done on machine 1 and jobs 4,
5 and 6 on machine 2.



In the following simplified example of GAP we assume that we
just have a fxed cost f; for using the machines that we want

to minimize.

Model 1

m
min z; = E fiy;

i=1

T

E a;jTi; < by, i=1,...,m

=1
TT1

Z‘riﬁf:l-‘- 7=1.....n
i=1
zij, ¥yi € 10,1}, i=1,....m; j=1,...,n



Model 2

T
min zo = E iy
i=1

n
E {Ii'jilfij E bi? 1= 1} T
j=1

m
Z'Tij_l* j:l‘ T

i=1

Tij —Yi =0 1=1,..., m:; 7 =1,....



Model 3

(i
min zs = E fivy;

i=1

T

1=1,....m
7=1,....n
1=1,...,m; 3=
r=1,....,m; 3=



10 instances, 8 machines, 25 jobs, m=8, n=25

Instans | z1% | 257 | 237 | 2f =23 = 23
1 241 | 127 | 293 333
2 132 | 68 | 150 192
3 174 | 154 | 271 275
4 117 | 83 | 163 207
5] 221 | 158 | 310 269
6 104 | 89 | 157 177
7 160 | 188 | 388 409
8 156 | 129 | 219 291
9 123 | 96 | 171 189

10 40 | 41 77 102




Facility location




Facility location




We define the variables as
| B 1. if facility 7 is open
Y — i
0. otherwise

r;; = fow from facility ¢ to customer j

and the model can ho fi }1‘111111&’[':‘-(1 as

min z = E E flja:erE fiyi

i=1 j=1
s.t Z L =S r=1..... m (Supply)
=1
Z ri; = dj, ;=1 n (Demand)
1=1
ri; = 0 r=1.....m; 3=1.....n
v, < {0,1}, i=1,..., m



f:

min z = Z fiyi + Z Z CijTij

i=1 j=1
m
da E Lij — dj}
1=1

rij; < My,
rij > 0, yi €10, 1},

(200 300 400)%, d = (15 40 35 25)T

17=1,...,n
t=1,....m; g=1,...,n
t=1,....m; 3=1,...,n
3 22 9 14
. 12 10 11 13
o 24 22 17 11
3 14 25 17



Different values of M gives the following results
From solving the LP-relaxation.

M| zip
1000 | 1199
500 | 1228
200 | 1315
100 | 1410
a0 | 1530
40 | 1590
30 | Infeas




Two routing models

= Network formulation

= Route based formulation with set
partitioning model

Suppose we have I’ vehicles and that the capacity for each is b. We let d; denote
demand at customer ¢ and ¢;; the cost to travel between customer ¢ and customer

7 (2 = 0 is the depot).



min z =

5.1

[/

im M

h=1,... K

i =10

i=1,....m

j=1.....m k=1,....K
i=1,....m k=1,... K
E,2<|S|€=m

i=1,..., m; j=1.....,m k=1
i=1,..., myk=1,..., K



Set partitioning problem

We introduce notation

I, if element 7 1s inluded in alternative j
Aij = : . .

0, otherwise, 1 =1,...,m, 7=1,...,n
c; = costforalternative j, 5 =1,...,n

and the definition of variables becomes

1, if alternative 7 i1s used
.’Ifj = . ;
0, otherwise, j7=1,...,n

The model can be formulated as
i
min 2z = E CjT
j=1

da E ajri = 1, 1=1...,m

r; € {0,1}, 7=1,...,n



A transporter has two vehicles and should deliver two five cus-
tomers. The capacities are 40 and 35. The planner has decided

that one vehicle will deliver to three customers and one to two
customers. The customer demand is 15, 12, 14, 13 and 10.

depa




min z= [117 123 112 119 98 104 87 90 76 110 104 71 99 105 78 78 T4]

S.L.

111111

]
]
]
]
]
]
]

Optimal solution: x7 = x5 = 1. others x; = 0 and 2"

(Vehicle 1)
(Vehicle 2)
(Customer 1)
(Customer 2)
(Customer 3)
(Customer 4)
(Customer 3)

= 17T.

T

X



Comparison (10 vehicles, 50 customer)

= Network = Set-partitioning
— 25,500 variables — ? Variables
— 1070 constraints — 60 constraints
— ? constraints
(subtours)
= + and -:
= + and -: + simple to generate
+ simple formulation routes (with capacity)
+ all routes included = + solvable
= -solvable? = - not all routes

- difficult with capacity
constraints



Methods



Implicit enumeration In this class of methods we find Branch and Bound (B&B)
methods. Here enumeration with optimistic and pessimistic bounds are
used to limit the search.

Relaxation- and decomposition These methods use relaxations of the model.
frequently used relaxations are LP-relaxation and Lagrangian relaxation.

Decomposition methods splits the master problem into a number of sub-
problems. Each subproblem is relatively easy to solve as compared to the
original problem. Generation of variables are often called column genera-
tion.

Cutting plane methods These methods are based on solving a sequence of LP
problems where additional constraints are added. This means that the con-
vex hull of the integer points are generated.

Heuristics Heuristics are methods that are based on simple rules and/or opti-
mization methodology. There is no guarantee of optimal solutions. How-
ever, the solutions are often found in a short solution time.



It is possible to state optimality conditions (Karush-Kuhn-Tucker
conditions) for LP problems and nonlinear problems. These con-
ditions, together with convexity analysis, can be used to identity
and prove that a solution is a local or global optimal solution. For
IP problems there are no corresponding optimality conditions. we
need to use other theories and techniques to show that a solution
is optimal or not.

Usually, iterative methods are developed that finds optimistic bounds on the op-
timal objective function value z* and pessimistic estimations. For minimization
problems the optimistic bounds are lower bounds, z (LBD), and the pessimistic
bounds an upper bound =z (UBD).



If we assume a minimization problem and generate a sequence of
optimistic bounds

1 2 3 .
<< <2

VAN
2
*

and a sequence of pessimistic bounds

_ _9 _ _ |
PS> > . >E >

we can stop the solution approach when the optimal objective
function value is within a small interval, i.e. 7 — 2 < €.



Counsider the IP problem [IP]

min z;jp = c¢'Xx

s.t. Ax < b (1)
-

where we have divided the constraints into two sets. One set
is the complicating constraints (1). and the second (2) are simple
constraints. Examples on simple constraints are for example lower
and upper bounds on variables. Constraints (3) are the integer
requirements on the variables.



Pessimistic bounds

Each feasible solution X to the problem IP provides an upper
bound and is called pessimistic estimation of 25, i.e. ¢/xX >
27p. These bounds are also called primal bounds.

Optimistic bounds

To generate lower bounds and optimistic bounds to 27, is not
equally standard. Instead there is a need to use different methods.
Each is based on some form of relaxation which is some kind of
simplification of the original problem. It is possible to for example

e Remove the integer constraints (3) and solve the LP relax-
ation.

e Make the feasible area larger by removing one or several
of the constraints. We can, for example, solve problem IP
without the complicating constraints (1)

e Make a Lagrangian relaration, which remove a set of con-
straints, for example, the constraint set (1) but at the same
time change the objective function buy introducing terms
based on Lagrangian multipliers.



The solution to arelaxation provides important information about
the IP problem. Let R denote a relaxation of IP. Moreover, let
x;p and x7% denote the optimal solutions to the IP problem and
the relaxation , respectively. Also let 27p and 2} denote the cor-
responding optimal objective function values.

e A relaxation always provide a better (or equally good) ob-
jective function value ie. 25 < 25p.

e If R has no feasible solution, then problem IP has no feasible
solution.

o If 2 is a feasible solution to 1P, we have X7, = xp and
2ip = Zp.

e Each feasible solution X to IP found, for example, by mod-
iftying xp, provides a pessimistic bound of z7p.



Cutting planes
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Step 1 Choose a strong formulation of the problem. Add initially generated
valid inequalities if possible.

Step 2 Solve the LP-relaxation.

Step 3 If an integer solution is found — Stop, we have found the optimum
slution,

Step 4 Add one or several valid inequaliteis that cut away the solution to the
LP-relaxation.

(a) based on problem specific inequalities, or

(b) based on a general cutting plane method(e.g. Gomory’s method).

Step 5 Reoptimize and go to Step 3.



Example

Gomory cut:  x +Xx, < 2

This cut provides the
Convex hull to the
Integer points




Example
max z =11x; +10X, +3X; +4X, + X;
st OX, +3X, +2X; +2X, + X: <6
X; € {O,l}, V]
Possible valid inequalities

X, +X, <1 (1) X, + X, <1 (2)
X, +%X, <1 (3) X, + X+ X, <2 (4)

N \[
Solve LP relaxation = X = %’1’0’0’0 k :16%

Add (1) = x,=(01,%10],2=15Y

Add (4) = x,=(0,10.11),2=15
Optimum!




Branch & bound
methods



Algorithm - Land-Doig-Dakins:

Step 0 Initialize the pessimistic bound z = +4oc. If a feasible solution is
known, x, update the bound with = = ¢'x. Set n = O and & = 0.

Step 1 Solve The LP-relaxation of subproblem Pk. We get a solution x* and
objective function value zp; which provides an optimistic bound in that
part of the search tree.

Step 2 If no solution is found in PFk, stop the solution and back track. Go to
Step 6.

Step 3 If zp; > =, then we can not find a better solution and we can terminate
the search in this region and back track. Go to Step 6.

Step 4 If x"'* satisfy the integer requirements then we can not find better solu-
tions and we can break and back track. If zp; < = then we update the best
pessimistic bound by ¥ = zp;, and let x = x¥*. Go to Step 6.

Step 5 Choose a fractional variable x; with value b; and create two subprob-
lems as

Pn+1: Pk + constraint z; < |b;|
Pn+2: Pk + constraint r; > |b;] 4+ 1
Let n := n 4 2. Note that node PF 1s searched.

Step 6 If all nodes are searched or if the convergence crieria are satisfied, stop.
optimal solution is x with objective function value?z,

Otherwise, choose a not searched node PFE and go to Step 1.



Land-Doig-Dakins

max z = 9x +10x, x:(z %)T 2-24%
st 2%+ 3X, £ 6

®,
X, <2 X, gy X, 21
X, X, =0, integer —2 Of z-18 % ) (% J 2-23
> 2

le z<z stop! ~ Xlg &
3 No solution

x=(1 %)T z=22 O/ stop!

2.
X, < \QZZ
O e

1 x=(1 1) z=19 ()x=0 2] z=20
‘\ — . .
® ® ® — 7<7 Stop! Feasible solution.
1 2 3 - Stop!

Optimum:|x =(0 2)", z =20




max
st

z = 11X, +9X, +5X; + 3X,

x=(11% 0 0 of z-8252-77

6X, + 95X, +3X; +2X, < 45 Q

X;, Xy, X5, X, 2 0, Integer X, <7

x=(1 3 o of 2-824/ ()

N
Feasible solution, stop!\
X, <6 X, =7

x=[6 9 o of z-822

x=(5 3 0 0) z=82

Feasible solution, stop!

X, < &21

No solution, stop!

x=(7 0 1 0) z=82/() 'p3)

X =

624 1 0 of z-823

0 solution, stop!

x=(55/ 2 0 o] z=822
( )

No solution, stop!




Knapsack 0/1

max z = 11X, +9X, +5X; +3X,
st 6X, + 5%, +3X; +2X, < 10
X, Xy, X5, X, €{0 1}

x= 4% o of z-182z-11

1

N
x=h 01 YJ z17,§g/ () x=64 1 0 of 2-182
/ X, =0

Stop, integer coefficients  — =
Means that z must be integer. x=(0 11 1) z=17 O/
f7can not be better than Feasible solution, stop! No solution, stop!

Many knapsack problems can be formulated and solved
efficiently by dynamic programming.



Search strategies
Depth-first Breadth first

S




Example B&B

Five jobs on one machine. Set up time
dependent on sequence, se table. Decide sequence
of jobs in order to minimize total time.

Variables:

]

_|4if jobiisdone as number j
|0, otherwise

Previous

5 Job

none

g B~ W DN

10

12

~N O N

11
8
9

12
10

15
8

10
14
12

16

B&B: relax the ordering. Solve by chosing cheapest cost

In column. Fix one job and resolve.

11
10



Example B&B

P, Z=
Prev
1 2 3 4 5
Norne || 4| |5] 8] 9 |4
1 - 7 12 10 9
2 _ - - -
: g ; 10 1‘2‘ i; 7 =36 7-36  7-38 z_37
1 — B )
worse feasible worse worse
4 /7 8 15 - 7
5 (12 9 8 16 -
_ Further
P,,Z=36 P,,z=35 search
Prev prev
1 2 3 4 5 1 2 3 4 5
None | 4 |5] 8 9 4 none | 4 5 8 9 |4
Ll - 7120 9 peggible solution 1 | - [7]12 [0 9

2 6| - 10 14 11 2-1-4-5-3 2 6] — 10 14 11
3 (10 11 - 12 10 3 |10 11 - 12 10
4 /7 8 15 — |7 4 /7 8 15 - 7
5 5




sequence: 5-3-?

sequence: 5-3-1-?

P,,2=35
prev
1 2 3 4 5
none | 4 5 8 9 [4
1| — [7]12 [io] 9
2 ||l - 10 14 11
3 (10 11 - 12 10
4 |7 815 - 7
5 |12 9 |8|16 -
PlO’Z:39
prev
1 2 3 4 5
none | 4 5 8 9 [4
1| — [7] 12 [to] o9
2 |6 - 10 14 11
3 (jo] 11 - 12 10
4 |7 815 - 7
5 |12 9 |8|16 -

=239 z2=39 z2=37
worse worse worse

Optimum in node 2
z  =36,sequence:2-1-4-5-3



We were lucky to find a feasible solution fast.

In order

prev z=40
1 2 3 4 5
none (|4 5 8 9 4
1| - |7]12 10 9
2 16 —-|10 14 11
3 110 11 - [12] 10
4 17 815 - [7]
5 112 9 8 16 -

cheapest

prev =43
1 2 3 4 5
none | 4 5 8 9 |4
1| - [7]12 10 9
2 | 6 - 10 [14] 11
3 |[10] 11 - 12 10
4 |7 8 15 - 7
5 |12 9 |8|16 -




Branch & Cut

Combination of B&B and cutting planes

/'

Idea: Add cuts so that
the LP-relaxation
becomes stronger
before branching




Branch & Cut

An important extension is to make the LP-relaxation stronger by
adding valid inequalities. This is the idea behind Branch & Cut.
In each node in the search tree we add, if possible, one or

several valid inequalities. We study a simple knapsack problem to
illustrate the idea.

min z = Txy 4+ 12x9 4+ Hxq + 1424

da 300x¢ 4+ 600z 4+ 50025 4+ 16002, = 700
xry,...,ry € {0,1}



Normal branching

x=(0.0,0.0.44)
PO z=06.12
e T
X iigfff HHMK ffl
x=(0,033.1,0) ff'f E’"“H-u,_,__
=010 _
. x={0.0,0.1) |
sz 3=§4 ) \P1
270 ~—_ X1 solution
.,-'-""ff HH"“E_\_\_\_\_
x=(0.67.0.1.0) x=(0.1.0.2.0)
=067
e x=(033.1,0.0) ~, x=(0,1,1.0)
Pl (P_Sj z=14.33 \P4) z=17.0
imfeasible worse worse

mfeasible solution



Branch & Cut

=1

x—(mﬂmmjlpﬁ

*=(0,0.1.0.125)
7=14.0 6150

x=(1.0.1.0) P5
=120




Comments:

e The valid inequalities generated in one node can also be used in other
nodes and hence strengthen the LP relaxation in other nodes.

e How to generate valid inequalities 1s very application dependent.



Constraint branching

The standard approach is to branch on variables with fractional
values. For some applications (e.g. set-partitioning models)

this is very weak and gives a large search tree. In some
set-partitioning models where a variable is set to one, many
variables are set to O. If the variable is set to 0, essentially
nothing happens. To get at better balance we can choose to do a
so-called constraint branching.

We will illustrate the technique with a set-partitioning model.
Constraint branching means that two new subproblem is created by
requiring that a set of variables should sum to O or 1 instead of

a single variable. In a LP-solution to a set-partitioning model

each constraint or object (to be partitioned) will be covered by

one or several variables/columns (representing alternatives).



For each
pairwise constraints, p and g, we can define the variables j € .J,, that have a
coefticient that is non-zero for both constraints p and ¢, 1.e.

Jyy =1J | ay,; = land a,; = 1}.

In an integer solution we must have
E ry=1or E r; =0,
JE€Jpq JE€ Jpq

at the same time as there always exists a fractional LP-solution where there are
two constraints p, g with the property

0 < Z:rj-r::l,

JE Jpg



From the rote node we can define two sub-problems

P1: PO+ constraint E r;=1
J€Jpq

P2: PO+ constraint E x; =10
J"Equ

There are often several combinations of constraints to choose and normally the
pair of constraints with highest value of ) _._; x; is chosen.

= Pg



We study a routing problem with three vehicles. There are nine customers and
30 routes (ten for each vehicle). Each route visits 2.3 or 4 customers. The model

15

min z = (57 45 69 55 57 67 57 57 71 55 54

s. L

(1111111111

55 56 54 55 56 7 10653436905 1 E.J

1111111111
ITTT1T11111
11 1 11 1 11 11
1 1 1111 1 111

1 1 1 11 11 11 | |
111 11 111 11
x < {0,1}

5 65 44 58 56 69

(Vehicle 1)

(Vehicle 2)

(Vehicle 3)
(Cust 1)
(Cust 2)
(Cust 3)
(Cust 4)
(Cust 5)
(Cust 6)
(Cust 7)
(Cust 8)
(Cust 9)

if we solve the LP-relaxation we get 2 = 16558 withry = 0.17, 2 = 017, 227 =
0.33, T = G.SS,IH_ = 0.42,.‘1’712 = ﬂ.l?,;'{f-lg = ﬁl?, g = D.QE‘,IEE =
0.25, w9y = 017, 295 = 0.25, 295 = 0.33 (other variables ().



Normal fractional branching o~
|\p0 | z=165.58

%,,=0 Xy=1

N a
=165.58

\P2/= Pl

infeasible
N
z=166.00 I
\P4 >3/
(=1 infeasible

infeasible

infeasible

searched not finished



In this case we combine vehicle constraints with customer constraints. For
each combination (vehicle ¢ and customer k) we compute the value d;; =
Zje J, Q3447 Where J; are routes driven by vehicle i. These values are given
in table 6. One interpretation is which proportion of routes that visit each cus-
tomer. If we study vehicle 1 we can see that the LP-solution "visits" customer
| at 17 % of the routes and customer 7 at 67 % of the routes.

Vehicle 1 Vehicle 2  Vehicle 3

Customer | 0.17 0.58 0.25
Customer 2 0.17 0.42 0.42
Customer 3 0.33 0.42 0.25
Customer 4 0.33 0.17 0.50
Customer 3 0.33 0.33 0.33
Customer 6 0.33 0.42 0.25
Customer 7 0.67 0.17 0.17
Customer 8 0.33 0.42 0.25

Customer 9 0.50 0.25 0.25




P1: Vehicle 1 visit customer 7 : xa3 + x4 + 26 + 29 + 1190 = 1
P2 : Vehicle 1 do not visit customer 7 : x93 + x4 + ¢ + 79 + 1190 = 0

In this model it is easy to consider the branching decision. Instead of adding
explicit constraints, we fix variables to 0. In P1 we know that x| = xy = x5 =
r7; = rg = 0 since the other must sum to 1. In the same way we can in P2
require that x5 = x, = x5 = 9 = x5 = 0. We select P1 since the solution
suggest that vehicle 1 should visit customer 7.



The new solution from FP1 gives 2 = 165.86 with x4y = 0.29, 5 = 0.29, g
043, 11 = 0‘36115 = 031“1,1(_, =
0.14, xo5 = 0.07, 230 = 0.64 (other variables 0).

029, 10

01—1, Ioa = 01—1135
Corresponding values

of

vehicle-customer are given in table 7. Note that vehicle 1 - customer 7 has

value 1.

Vehicle 1

Vehicle 2 Vehicle 3

Customer 1
Customer 2
Customer 3
Customer 4
Customer 5
Customer 6
Customer 7
Customer 8
Customer Y

(.29
0.29
0.57
0.00
0.00
(.43
1.00
0.43
0.29

0.57
(.43
(.36
0.21
(.36
(.36
0.00
0.50
(.43

0.14
(.29
0.07
0.79
(.64
0.21
0.00
0.07
(.29




Next branching is done for vehicle - Customer 4 which has a value of 0.79. The
entire search tree is given in figure 6. In subproblem P4 we get z = 167.8 but
since the coefficients are integer we get 2 = 168 > Z. The optimal solution is
Ty = Ty = Ty = 1 with 2 = 168,

()
PO ) z=165.58 — z=166

bil 1 —kund 7: x3+xX+X5%T%, ;=1

(pa )z=166.67

z=165.86 —> z=166

bil 1 —kund 4: bil 3 — kund 4: X53+%X5 4 X6+ %3571

(16) 7=168.00
(25, (23
infeasible infeasible fractional solution, integer solution, stop

stop



Branch & Price

* |[n many applications (e.g. Set partitioning type
models) it is not possible to generate all variables
explicit

= Column generation — a method to solve large scale

LP problems can be used in each of the B&B
nodes



Column generation

min z =clx
da Ax = b
x > 0

dual values

A has many columns
as compared to the
number of constraints

new column



Algorithm = Column generation:

Step 0 Choose a subset R” — R of columns with the property
E ajr; =by, i=1...,m. Setk =0.
jeR

Step 1 Solve Master problem

min =z = E €3I
jeRE

5.1 E Ly = E?E'_, i.:].‘,m
jeRk

x5 0, 7 € R*

A%

Let x'*) and v{*) denote the primal and dual solution.

Step 2 Solve subproblem

W= ._mm Z oYy, Application dependent
and let the optimal solution be a new column (variable) s,

Step 3 Check convergence. The point x*) is an optimal solution if w* > 0.

Step 4 Add column s till R*. i.e. update R*+! = RF U {s}.

Step 5 Update k := £+ 1 and go to Step 1.



Cases & Results



Paper roll cutting



Roll cutting at paper mills

Length: 30,000 meters
Width: 5-10 meters
Products: 0.3-1.0 m
Roll: 5,000 meters
Fixed demand

Trim loss

;2

crosscut knife




Tactical problem: cutting stock

Z

Z

rd

nrohlam

w L L L L L LLLEL] n

| L ELEELELE P1] w=min) x;
| | T T TCECTTT =1

- 1 1 | Lll Ll
| 1 1T T TTTLT

n
St Za”XJ > bi’ | :1,...,m
_ j=1
L N

Xj 20, Integer, J=1,...

Coefficients :
b. = Demand of roll 1.
a; = Number of times roll I appears In pattern j.

Variables:
X; = Number of times pattern J Is used.




Standard solution approach

» Classical Gilmore & Gomory: Column generation
and B&B

- n n
min Z X, duals i re=1-> " v,w,
j=1
. m
s.L. Za”XJ—S = ' I=1..m st ZdiWiSL
~new pattern =
X; 20, integer w, >0, integer, i=1,...,m
Data:

d. = width of product i.
L = width of main roll.
v, = dual variable for constraint i

Variables:
w, =number of product i in new pattern.



Practical considerations

* The number of rolls in a pattern is limited.
* The number of different rolls in a pattern is limited.

= Some rolls are not allowed to be in the same
pattern.

= Some rolls must be included in the same pattern.
= There is a maximum allowed trim loss.

= Demand is given as a target value with bounds on
under- and overproduction.




OnTop Trim - [Case A]

. Eile Settings Window Help

|BE[™] #- xa3||8 ull€| < aal

===
=l

Saved Solutionz  Solve Settings |

Products | Calculation Hesultsl

wol ] 1 | LLLLL
Motz| | | L L L]

| 1} 1000 2000 3000 4000

Mame: | Length: | Width: I Core | D emand: | axMilnP.... | LowerBou... I UppeBou.. I Shipping date I Frice I Wieight |
Trim Lass |321 j P33 2903 993 none 20 100 20 21 2001-01-24 ] ]
) 5 Pa7a 2303 &7 7Emm B 100 B g 2001-01-24 ] ]
Fieel Width [as00— -
el Width [rmm] :I' o PB4 ga03 864 7Emm 25 100 x5 * 2001-01-24 0 0
Max Product Count |14 = PSS 8903 855 none 20 100 20 21 2001-01-24 ] ]
Max Uit Count e = i P54 8903 B54 7Omm 150 100 143 151 2001-01-24 ] ]
P53 903 453 none 19 100 15 20 2001-01-24 ] ]
Max salutions: l”— j s P45E 8093 456 70mm 24 100 T} s 2001-01-24 ] ]
= P44 8903 444 none 49 100 43 51 2001-01-24 ] ]
Ma time [rin]: |D = s 420 8093 420 Toom 11 100 10 12 2001-01-24 ] ]
- P15 903 415 none B4 100 B3 £S5 2001-01-24 ] ]
Soing:  <Mo sortings P61 2303 361 none 25 100 s 24 2001-01-24 ] ]
P44 8903 344 70mm 28 100 7 29 2001-01-24 ] ]
i P42 8903 a4z none 146 100 145 150 2001-01-24 ] ]
- F322 903 krr) none 118 100 17 113 2001-01-24 ] ]
Mol ™ | P9zz | Pa7ra | PEE4 | PES5 | PRS4 | P453 | P456 | P444 | P420 | P415 | Pasl | Pa44 | Pad2 | Paz2 | | Count| Trimloss [3]]
: | Pattem 1 2 i 1 ] 2 ] i ] ] ] ] i 1 i 1 0.000
T T 1] Fatemz 0 i 2 i i 1 i i i i 1 i 1 5 5 0.000
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CEEN P R .. Fattern 5 0 ] ] i 5 1] ] z i i i ] 1 ] 25 000
r Fattern & 1 ] ] 1 ] ] 1 ] ] ] ] 1 g ] 10 0.0
(YT O ) ) N O S I I | poreng D 0 00 0 0 00D 05 1 & 0 0 2 0m
- Fattern & 0 i i i i 1] 7 i i i ] i 1 3 g 0.000
VT O R I N N B N | fo 0 0 2 0 0 0 0 0 2 0 00 0 g 2 oo
| = Pattern 10 1 ] i ] 1 1 ] ] 1 ] ] 1 1 4 2 0.000
wel | | ELELT L] patem 0 i 1 z 1 ] i i ] i i 1 z 2 5 0.000
° | Pattern 12 1 1 1] ] 1] 2 ] ] ] ] ] 1] 5 i B 0.000
No7 -----.-.--.- Demand Diff: o I} 1 1} 2 1} 1 1 1 i} i} 1 2 I}
1 Summary
VY0 1O O I Y I Y N I I it 5
= Under production: 1}
Mo9 ---------- Ower production: 9
B Total Trimlozs [rm]: O
ool Ll L.LL LLLLJ| o imoss[z  o0.000
Total date faults: o
Total core faulks: 24
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2D Board cutting












3 | S | | IO I
3 \l T | ,MMEP“JT;”HJ,W

Upper part: optimal placement of max 4 products.
Middle part: optimal placement of max 4 products.
Lower part: Allocation areas (defined through defects)



e S

Upper part: optimal placement (max 100 products)
Middle part: current heuristic solution
Lower part: Allocation areas (defined through defects)



T i T T

Upper part: optimal placement (max 100 products)
Middle part: current heuristic solution

Lower part: Allocation areas (defined through defects)

i




Upper part: heuristic solution (note non-guilliotine solution)
Middle part: optimal placement



Terminal location



Case: Sodra Cell - mills

 Fell BT

Sodra Cell in total
Capacity: ~2 million ton
Wood: ~9 million cu.m.

*cu.m. = cubic meters, solid under bark



Customers

Terminaler

e Terminals

O Svenska, Tofte  (2) ¥SKOG
B Tofte 7 - E3C

¢

LA PALLICEy




Inventories / Lead times ...

SODRA CELL PAPER PRODUCER

‘ PULP MILL

(15-20 DAYS)

>15% of volume => 320 000 tonnes
€ 150 million

Storage cost (20%)
€ 30 million




PulpSMI:
Supplier Managed Inventory

T ——
l REPORT CONSUMPTION,
INVENTORY STATUS,
FORECAST
CONSUMPTION

B Sodra Cell responsibility Security stock
Customer responsibility (5-10 days)




Distribution - Complexit

Three vessels on long term contract
Additional vessels on spot market
Train and truck transports

Several different products

Supply ~ Demand

Alternative
shipment ports

HULL
GRIMSBY

Alternative =STOFT

terminals



Mathematical model: objective

min > > > > (c +¢" )X, + A-routes

keR, i€l jely peP

P+ )X, + B-routes

keRg iel jely peP

DX (e +eM")x +ZZc§x§ + Spot + return trips

iel jely peP jeld iel

delyr+> fiz Terminal costs

jed jed

IDIPNN ymp £ C,qymp + Distribution from terminals

hely leJ, peP jed qeQ peP

DD DIl A B I P vhid ekt Train + truck

iel geQ peP iel geQ peP




Mathematical model: constraints

DD X < D W Vield, Proportion A-routes

keR, i€l peP leL
széjp+zle§jp+zxi?p:Zy}lerzy%p VIiEJH,peP .
keR, iel keRg iel il leL qeQ F ow COnservathn
> i =Y Vied,,peP  Flow conservation
hely qeQ
DY A Vet + > Ve =D, VqeQ,peP Customer demand
jed iel iel
DD DAY DD Y g+ > Y x;: <r  Ship capacity
keRy i€l jedy peP keRg iel jedy peP jedy iel
DD Xao+ D, DD Xeo =2 X Viel Return flow
keRy jedy peP keRg jely peP jedy
DD X+ DD xg =) i Vjied Return flow
keRy i€l peP keRg i€l peP icl

z,2>w, vjed Return flow

leL



Problem size

Number of:

= Customers 262
* Pulpmills 4
» Harbor-terminals 21
» | and-terminals 3
= Ships 3
= Products 30
= A-routes 84
= B-routes 1,873

= Spot-routes 84



Terminaler

o .| Terminals

HF
Hs
O Svenska, Tofte (2)
B Tofte )

Scenarios

<, Problem P2: Terminal i Terneuzen is

/ accessible for all customers in Italy.
Problem P3: Terminals In

GRANGEMQUTHy

Sunderland and Grimsby become

a8 available for all customers in UK

Problem P4: Problem P3 + only one
of the terminals in Sunderland

and Grimsby can be used

— N\ Problem P5: Terminals in Kiel
e Ghent, Boulogne and La Pallice

tﬁaf’“'}v " N )] ~<\ ‘</
- /;/ Lk 7 IR
g A / v A{L‘;«{ e . .
“} - % Problem P6: Alternative to the Kiel

AL preuy " canal is tested.




Production planning



Supply chain structure

v
\

Forestry
Districts

S90Z S90TZ S85Z  S85SZ S70Z

sBz 90z
[[TTTITITTITT [

Production Plans



Sodra Cell, Supply Chain - conditions

Daily variation due to
campaign production

Deliveries Stock Usage

to mill at mill in mill
(0-9 000) (0-90 000) (0-8 000)
/ /
90,0 9,0
vV
80,0 - 8,0
70,0 H I - 170
60,0 - M 6,0
50,0 - - 5,0
]
40,0 - 4.0
30,0 - 3,0
20,0 + d 2,0
10,0 - - 1,0
o — — 0,0

January 1st to June 30th 2000



Solution method - column generation

Production schedule (campaigns)
S90z S90TZ S85Z  S85SZ S70Z SBZ S90z

SBZ
s90z | |
s8sz ||
S852/1Z
S902/7Z H

Each campaign has a minimum and maximum length in time

There Is a fixed cost to change campaigns i.e. recipies



Model: Constraints

s+ Hi =D X =k Viiart Storage in forests
jeM

s+ Wi —Vi =iy Vi, pit Storage at domestic harbours
D> . <T" v Inflow levels
acA
09f, 2> x, <L1f, Vjat Inflow levels

ieF
DD X <T7 Vit Capacity levels in forests
JeM aeA
D Vi =D VA, pit Domestic demand
jeM
D v, =D Vpt International demand

jeM



Model: constraints cont.

/Storage of pulp logs

IjAa,t—l +injat - Z Z R}rr]agjqrtzjq B Ij/;t =0 Vvj,at dual Ujat

icF qeQ; reR;

P out P - .
s+ Z Z RirpOjartZiq = Wi _Zyjdpt —lix=0 Vi.pt dual: g

t
qEQj I’ERJ- / deD Jp

Storage of pulp products qZQ: Zg=1 V] dual:
€N

R}?a =amount of assortment a used in one time period when running
recipe r at pulp mill

Rj’r“; = amount of product p produced in one time period when running
recipe r at pulp mill

O, =1 1f recipe r runs in production plan g during time period t
at pulp mill j, O otherwise



Solution method - Subproblem

7 NN N
FRALALIATALT LI

| | |
Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

Find best reduced cost production plan
Z in out
C _C Z5qut RJra jat Z5an Rer jpt

a,t,r

Subproblem: a shortest path problem
Arcs represent campaigns
Arc costs reflect dual prices on log / pulp inventory
constraint and production / changeover costs



Solution method - column generation

Restricted master Problem

3 S 8 8 8 8
Q o o o o Q.
© c © c © c
5 S 3 S 5 S
= - S - E
S 5 S IS S 8
0 o O al O al
Subproblem Subproblem Subproblem

pulpmill 1 pulpmill 2 eeeeccccee | pulpmilln




Branch and Bound procedures

= Normal variable branching is not effective

— There are very few 0/1-variables with value 1 (out of a
very large number of possible)

— The 1-branch is too strong (most often creating
Infeasible solutions)

— The O-branch is too weak (there are many similar
production plans)

— Procedure creates a huge Branch and Bound tree



Constraint branching heuristic

= Constraint branching enables a more
efficient strategy

= Given a fractional LP-solution:
— Sum the fractional usage of each receipe for each time
period and pulp mill
— choose the usage closest to 1.0 and branch on this
« for example: use receipe S90Z at day 14 in mill Monsteras

— the branch is easy to implement in the subproblem i.e.
simply remove certain arcs



Production plans

= Comparison with manual plans (campaign
changes 3->5 million SEK, total 120 - 110 million
SEK)

= Strategic implications regarding campaign
scheduling

VARO
VARO
VARO
VARO

MONSTERAS
MONSTERAS
MONSTERAS
MONSTERAS
MONSTERAS
MONSTERAS

MORRUM
MORRUM
MORRUM
MORRUM

VAS90Z
VAS85RZ
VAS85TZ
VASS80TZ

MONSBZ
MONS90Z
MONS85Z
MONS85S
MONS90S

MSTOP

MORSBZ
MORS90TD
MORS70TZ
MORS90RD




Home care operations



¥ The Elderly CR
-

Assignment P

g ° ° l"\*‘

(scheduling & routihgs |

Service
Assighifenti=

® .



OR terms






fsosp =min Z Z Chj =

keK jedg

a1,

szj=1 vk e K
jEJk

Y ) Ayzy=1 YieN

ke K jedp




Approach

* |n practice locally since 2003

" Full scale implementation 2008

— 800 Planning Officers are involved

— All Home Care Units, about 15000
workers participate

— 40 000 Elderly Clients enjoy the
benefit

* Large scale solutions
— E-learning programs
— Centralized database

— Interconnected systems to ensure
information flow

THE CITY OF STOCKHOLM



Quantifiable benefits (1)

* |ncreased Efficiency

— The efficiency improvement, which is calculated as more contact
hours to less cost and with increased service quality, was 12
percent. For example, the ordinary staff could make 12 percent
more visits in the same working time while having a better
competence match and visiting the same clients.

— Morning meeting times have decreased by two-thirds;

— In the City of Stockholm, the time spent for developing schedules
for each of the 15,000 care workers in the city’s home-help units
can be lowered by an average of 10-12 minutes every day. On an
annual basis, this corresponds to 310-375 full-time annual
equivalents.



Quantlflable benefits (i)

Transportation
In Bengtsfors the driving distance is 20 percent lower than previously

= Sick Leave

In Jakobsberg, the annual short-term sick leave fell from 563 days to
166.

= Quality and Safety

— In Jakobsberg, the number of missed visits (forgotten, delayed, or
rebooked) fell from 91 to 4.

— In Bengtsfors, where staff had previously had many discussions about
which staff member should perform which visit, these discussions almost
ceased because the system is totally objective.

— Aurskog-Hgland employs highly qualified nurses; better skill matching
allows 22 percent of the nurses to be used for work requiring their specific
skills.



Unquantifiable benefits (i)

= Clients

— The risk of forgetting visits is reduced significantly.
— Easier to control the continuity among member of staff visiting a client.

— The reporting makes it possible to follow up, e.g., to review the overall care
hours.

= Staff

— Work in the home-care sector can be stressful. The removal of the often-
turbulent last-minute morning meetings has removed one stress factor.

— Creating routes that such that work is distributed fairly among the staff

members, and that allow for realistic travel times between visits has also
alleviated stress.

— The system can also schedule work tasks, such as meetings,
documentation, and administration.

— Better usage of employee skills could also raise the status of the home-
care profession.



System Overview

: Laps @are ¢
:  Daily :
:  planning
Mobile communication
Social Care SYStem Laps Care
) “mmssmmmmm> t
Back End system Integration : Activity and ¢ &K
U : time . r:a
:  reporting \Q — ]
..................... A IIl.lll|-||‘|
Healthcare \/ ’/ﬂ - l”i—n.-
Back End system E—
N
Human Resource
<) \_/
Back End system




Laps Care: Usage

— 2007 Laps Care daily scheduled 4.000 staff in 200
units

— 2008 : 20.000 staff in 250+800 units
— 2009 : 30.000 staff in 1500 units
— Sweden has 120.000 employed in Home Care

— Northern Europe has one million Care workers



Laps Care: Business Case

= Case study proves 10% improved efficiency
In cost savings and 5% in initial needed
Investment

Laps Care clients saved 2007: $US 30 million
Savings 2008: $US 75 million
Savings 2009: $US 125 million
Potential annual benefits in Sweden: $US 700 million

Potential annual benefits in N. Europe: $US 6 hillion



Sudoku



Sudoku

= Given Initial data
= Fill digits 1-9 into

boxes such that
= Every digit 1-9 7

appears in every

row, column, and
3x3 box 9

@)
N
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Case: Logistics planning after
the storm Gudrun at Sveaskog



The storm Gudrun

During the weekend of January 8-9 2005 the storm
Gudrun (hurricane winds) hit southern part of
Sweden.

More than 70 million m3 was blowned down; this
corresponds to one full annual harvest for Sweden.
Damage often at "difficult” locations.

Important function in the infrastructure was out of
order: electricity, phones, transportation etc.

The value of wood alone is 30 billion SEK
approx. 3.2 billion Euros.

Worst forest damages in Sweden for the last 100
years.
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Industrial
terminals

Storage
terminals

Storage g
road




Sveaskog’s logistics

Supply

« 2,5 -3 million m3 own forest
+ external volumes

e not close to harbours

Demand ‘

- Customer essentially north
of the area

- Sighed contracts to be
followed
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StormOpt - new decisions and restrictions

= Resource limitations
— Trucks (ton*km)

— Harvest capacity (different machine types)
* New decisions: harvesting, storage
— binary variables needed

= \Wood value

— Current and new industrial orders
— Roadside storage of logs

— Terminal storage of logs

— Trees not harvested

» Costs for harvesting and storage
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Situation

27 aggregated
harvest areas

4 harvesting
classes

5 assortment per
class

2,5 - 3 million m3
92 customers

O train terminals
5 harbours

20 train system
100 ship routes



Some important factors:

» The storm felled forest for Sveaskog was not
*harbour close”.

* The logistics costs associated with deliveries
to/from harbours were relatively high.

* Truck and transportation capacities were the
most limiting factors.

= Model size:
— 4,500 constraints
— 195,000 variables



Experiences and what happened

= The weather conditions with deep snow made
the operations difficult. When the snow depths
was less, the harvest level increased rapidly.

= More medium and large units than expected
arrived. Instead of 54-59-32 (large-medium-
small harvest units) there were 64-74-14 units.

* Increase in the number of trucks was slower and
It was not until the middle of April when there
was a balance between truck and harvesting
capacities (84 trucks were in operation).
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Experlences and what happened

The storm felled volumes were less than the estimations
(measured 2,45 against estimated 3,1 million m3).

= The volume carried by train was planned to be at
369,000 m3 and this was the level in practice.

= The average distance for the trucks was 83 km (2004: 97
km). The total volume carried on trucks were 1,73 million
m3.

* The transportation work on train was 47% of the total
work with an average distance of 340 km. This
transportation work on train represented 64 trucks.

= The volume carried by ship was smaller than planned
(23,000 against 52,000 m3). One reason for this was a
Finish strike.



Summary of operations
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Concluding remarks

» Quick and efficient change of logistic system
not possible without OR support.

* OR models easy to solve, modelling
relatively easy due to "similar” model and
cost structures difficult to compute.

» Project possible with dedicated manager at
Sveaskog.

* |ncreased acceptance of OR for non-OR
persons at Sveaskog.
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Concluding remarks

» There are many general and advanced solvers
and modeling languages available (CPLEX,

XPRESS, COIN-OR, AMPL, EXCEL, MPL, GAMS,
etc) for discrete optimization.

* There are many specific solvers available for
particular applications/ models (TSP, VRP, GAP,
Facility location, Knapsack, etc.)

= Actual implementations require knowledge in both
modeling and solution methods.

= Data Is available through databases. But, care
needs to be taken for error in data.

= Trends: Robustness, uncertainty, real-time,
coordination, even larger and detailed models



