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Modeling and Basic Properties

Consider optimization problem:

Minx∈X F (x, ξ)
subject to ci(x, ξ) ≤ 0, i = 1, ..., q.

Here X ⊂ Rn and ξ ∈ Ξ ⊂ Rd is a parameter vector representing

“uncertainty” of the problem.

Robust (worst case) approach:

Minx∈X
{
f(x) := maxξ∈Ξ F (x, ξ)

}
subject to ci(x, ξ) ≤ 0, i = 1, ..., q, ∀ξ ∈ Ξ.

Here Ξ is viewed as the uncertainty set for parameter vector Ξ.

Stochastic optimization approach: view ξ as a random vector

with a known (given) probability measure (distribution) on Ξ.

1



The Newsvendor Problem

Suppose that a company has to decide about order quantity x

of a certain product to satisfy demand d. The cost of ordering

is c > 0 per unit. If the demand d is larger than x, then the

newsvendor makes an additional order for the unit price b ≥ 0.

The cost of this is equal to b(d−x) if d > x, and is zero otherwise.

On the other hand, if d < x, then holding cost of h(x− d) ≥ 0 is

incurred. The total cost is then equal to

F (x, d) = cx+ b[d− x]+ + h[x− d]+. (1)

We assume that b > c, i.e., the back order penalty cost is larger

than the ordering cost. The objective is to minimize the total

cost F (x, d).
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Consider the case when the ordering decision should be made

before a realization of the demand becomes known. One possible

way to proceed in such situation is to view the demand D as a

random variable. By capital D we denote the demand when

viewed as a random variable in order to distinguish it from its

particular realization d. We assume, further, that the probability

distribution of D is known. This makes sense in situations where

the ordering procedure repeats itself and the distribution of D

can be estimated from historical data. Then it makes sense to

talk about the expected value, denoted E[F (x,D)], of the total

cost viewed as a function of the order quantity x. Consequently,

we can write the corresponding optimization problem

Min
x≥0

{
f(x) := E[F (x,D)]

}
. (2)
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The above problem gives a very simple example of a recourse
action. At the first stage, before a realization of the demand D
is known, one has to make a decision about ordering quantity
x. At the second stage after demand D becomes known, it may
happen that d > x. In that case the company takes the recourse
action of ordering the required quantity d− x at the higher cost
of b > c.

In the present case problem (2) can be solved in a closed form.
Consider the cumulative distribution function (cdf)

H(x) := Prob(D ≤ x)

of the random variable D. Note that H(x) = 0 for all x < 0,
because the demand cannot be negative. It is possible to show
that an optimal solution of problem (2) is equal to the quantile

x̄ = H−1 (κ) , with κ =
b− c
b+ h

. (3)
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Worst case approach.

Suppose that we know upper and lower bounds on the demand

d, i.e., ` ≤ d ≤ u. Consider the problem

Min
x≥0

{
f(x) := max

d∈[`,u]
F (x, d)

}
. (4)

We have here

f(x) = max
{
cx+ b[`− x]+ + h[x− `]+, cx+ b[u− x]+ + h[u− d]+

}
,

and if b > h, then x̄ = u is the optimal solution of problem (4).
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Example of financial planning

Suppose that we want to invest an amount of W0 in n assets,

xi, i = 1, ..., n, in each. That is,

W0 =
∑n
i=1 xi. (5)

After one period of time our wealth becomes

W1 =
∑n
i=1 ξixi, (6)

where ξi = 1 + Ri and Ri is the return of the i-th asset. We

would like to maximize W1 by making an “optimal” distribution

of our initial wealth. Of course, we have to make a decision

about xi before a realization of the returns Ri (of ξi) becomes

known.
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Suppose that we have an idea, may be from historical data,

about probability distribution of ξ = (ξ1, ..., ξn). Then we may

think about maximizing W1 on average. That is, we would like

to maximize the expected value E[W1] of our wealth subject to

the budget constraint
∑
xi = W0 and “no borrowing” constraints

xi ≥ 0. This leads to the optimization problem

Maxx≥0 E[W1] subject to
∑n
i=1 xi = W0. (7)

We have that

E[W1] = E
[∑n

i=1 ξixi
]

=
∑n
i=1 µixi,

where µi = E[ξi]. Consequently, problem (7) has the simple

optimal solution of investing everything into the asset with the

maximal expected return.
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Suppose now that we have a target wealth of τ . If W1 falls short

of τ we are penalized by r(W1 − τ), and if W1 exceeds τ we are

rewarded by q(W1 − τ), with r > q. This leads to the concept of

utility function

U(w) =

{
r(w − τ), if w ≤ τ
q(w − τ), if w ≥ τ,

and to the optimization problem

Maxx≥0 E [F (x, ξ)] subject to
∑n
i=1 xi = W0, (8)

where F (x, ξ) = U
(∑n

i=1 ξixi
)
.
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Chance (probabilistic) constraints formulation

Maxx≥0 µT
Rx

subject to Prob
(
RTx < −b

)
≤ α,

∑n
i=1 xi = W0,

(9)

where RTx =
∑n
i=1Rixi, µR = E[R] and α ∈ (0,1) is a chosen

significance level. The above probability constraint means that

the probability of loosing more than a given amount b > 0 is no

more than α, and is called the Value at Risk constraint. If R

has a (multivariate) normal distribution N(µR,Σ), then RTx ∼
N(µT

Rx, x
TΣx) and the probabilistic constraint is equivalent to:

b+ µT
Rx− zα(xTΣx)1/2 ≥ 0, (10)

where zα is the (1 − α)-quantile of the standard normal distri-

bution. Note that zα > 0 and the left hand side of (10) is a

concave function of x, provided that α ∈ (0,1/2).
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By convex duality, there exists λ ≥ 0 such that problem (9) is
equivalent to the problem

Maxx≥0 µT
Rx− λ(xTΣx)1/2

subject to
∑n
i=1 xi = W0.

(11)

The above problem can be viewed as a compromise between
optimizing (maximizing) the expected return µT

Rx and minimizing
risk term λ(xTΣx)1/2. In general (for non-normal distributions
or nonlinear return functions), it could be difficult to handle
probabilistic constraints numerically.

Risk averse formulation (Markowitz, 1952):

Maxx≥0

µT
Rx︷ ︸︸ ︷

E[RTx]−λ
xTΣx︷ ︸︸ ︷

Var[RTx]

subject to
∑n
i=1 xi = W0.

(12)
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Equivalent formulations:

Maxx≥0
∑n
i=1 µixi − λx

TΣx
s.t.

∑n
i=1 xi = W0,

Minx≥0 xTΣx
s.t.

∑n
i=1 µixi ≥ τ,

∑n
i=1 xi = W0,

Maxx≥0
∑n
i=1 µixi

s.t.
∑n
i=1 xi = W0, x

TΣx ≤ γ.
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Supply Chain Network Design

A supply chain is a network of suppliers, manufacturing plants,
warehouses, and distribution channels organized to acquire raw
materials, convert these raw materials to finished products, and
distribute these products to customers. Denote by S,P and C
the respective (finite) sets of suppliers, processing facilities and
customers. The union N := S∪P∪C of these sets is viewed as the
set of nodes of a directed graph (N ,A), where A is a set of arcs
(directed links) connecting these nodes in a way representing flow
of the products. The processing facilities include manufacturing
centers M, finishing facilities F and warehouses W, i.e., P =
M∪F ∪W. Further, a manufacturing center i ∈M or a finishing
facility i ∈ F consists of a set of manufacturing or finishing
machines Hi. Thus the set P includes the processing centers
as well as the machines in these centers. Let K be the set of
products flowing through the supply chain.

12



The supply chain configuration decisions consist of deciding which

of the processing centers to build (major configuration deci-

sions), and which processing and finishing machines to procure

(minor configuration decisions). Assign a binary variable xi = 1,

if a processing facility i is built or machine i is procured, and

xi = 0 otherwise. The operational decisions consist of routing

the flow of product k ∈ K from the supplier to the customers.

By ykij we denote the flow of product k from a node i to a node

j of the network where (ij) ∈ A. A deterministic mathematical

model for the supply chain design problem can be written as

follows
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Min
x∈X, y≥0

∑
i∈P cixi +

∑
k∈K

∑
(ij)∈A q

k
ijy

k
ij

s.t.
∑
i∈N y

k
ij −

∑
`∈N y

k
j` = 0, j ∈ P, k ∈ K,∑

i∈N y
k
ij ≥ d

k
j , j ∈ C, k ∈ K,∑

i∈N y
k
ij ≤ s

k
j , j ∈ S, k ∈ K,∑

k∈K r
k
j

(∑
i∈N y

k
ij

)
≤ mjxj, j ∈ P.

(13)

Here ci denotes the investment cost for building facility i or
procuring machine i, qkij denotes the per-unit cost of process-
ing product k at facility i and/or transporting product k on arc
(ij) ∈ A, dkj denotes the demand of product k at node j, skj
denotes the supply of product k at node j, rkj denotes per-unit
processing requirement for product k at node j, mj denotes ca-
pacity of facility j, X ⊂ {0,1}|P| is a set of binary variables and
y ∈ R|A|×|K| is a vector with components ykij. The set X repre-
sents logical dependencies and restrictions.
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The objective function of (13) is aimed at minimizing total in-

vestment and operational costs. Assume that at time a decision

about vector x ∈ X should be made, i.e., which facilities to

built and machines to procure, there is an uncertainty about pa-

rameters involved in operational decisions represented by vector

y ∈ R|A|×|K|. This naturally classifies decision variables x as first

stage decision variables and y as second stage decision variables.

Note that problem (13) can be written in the following equivalent

form as a two stage program:

Min
x∈X

cTx+Q(x, ξ), (14)

where Q(x, ξ) is the optimal value of the second stage problem
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Min
y≥0

∑
i∈P cixi +

∑
k∈K

∑
(ij)∈A q

k
ijy

k
ij

s.t.
∑
i∈N y

k
ij −

∑
`∈N y

k
j` = 0, j ∈ P, k ∈ K,∑

i∈N y
k
ij ≥ d

k
j , j ∈ C, k ∈ K,∑

i∈N y
k
ij ≤ s

k
j , j ∈ S, k ∈ K,∑

k∈K r
k
j

(∑
i∈N y

k
ij

)
≤ mjxj, j ∈ P.

(15)

with ξ = (q, d, s, R,M) being vector of the involved parame-

ters.The above optimization problem depends on the data vector

ξ and decision vector x. If some of the data parameters are un-

certain, then the deterministic problem (14) does not make much

sense since it depends on unknown parameters.
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Suppose that we can model uncertain components of the data

vector ξ as random variables with a specified probability distribu-

tion. Then we can formulate the following stochastic program-

ming problem

Min
x∈X

cTx+ E[Q(x, ξ)], (16)

where the expectation is taken with respect to the probability

distribution of the random vector ξ. That is, the cost of the sec-

ond stage problem enters the objective of the first stage prob-

lem on average. A distinctive feature of the above stochastic

programming problem is that the first stage problem here is a

combinatorial problem with binary decision variables and finite

feasible set X. On the other hand, the second stage problem

is a linear programming problem and its optimal value Q(x, ξ) is

convex in x (if x is viewed as a vector in R|P|).
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The concept of two-stage (linear) stochastic programming prob-

lem with recourse

Min
x∈X

cTx+ E[Q(x, ξ)], (17)

where X = {x : Ax = b, x ≥ 0} and Q(x, ξ) is the optimal value

of the second stage problem

Min
y
qTy s.t. Tx+Wy = h, y ≥ 0, (18)

with ξ = (q, T,W, h). The feasible set X can be finite, i.e., integer

first stage problem. Both stages can be integer (mixed integer)

problems.
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Suppose that the probability distribution P of ξ has a finite sup-
port, i.e., ξ can take values ξ1, ..., ξK (called scenarios) with
respective probabilities p1, ..., pK. In that case

EP [Q(x, ξ)] =
K∑
k=1

pkQ(x, ξk),

where

Q(x, ξk) = inf
{
qTkyk : Tkx+Wkyk = hk, yk ≥ 0

}
.

It follows that we can write problem (17)-(18) as one large linear
program:

Min
x,y1,...,yK

cTx+
∑K
k=1 pkq

T
kyk

subject to Ax = b,
Tkx+Wkyk = hk, k = 1, ...,K,
x ≥ 0, yk ≥ 0, k = 1, ...,K.

(19)

19



Even crude discretization of the distribution of the data vector ξ

leads to an exponential growth of the number of scenarios with

increase of its dimension d.

Could stochastic programming problems be solved numer-

ically?

What does it mean to solve a stochastic program?

How do we know the probability distribution of the ran-

dom data vector?

Why do we optimize the expected value of the objective

(cost) function?
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Basic properties

For any realization ξ, the function Q(·, ξ) is convex piecewise

linear. By the duality theory of linear programming we can write

it in the following equivalent form

Q(x, ξ) = sup
{
πT(h− Tx) : WTπ ≤ q

}
. (20)

It follows that the expectation function Q(x) = E[Q(x, ξ)] is con-

vex, and if P has a finite support (i.e., the number of scenarios

is finite), then Q(x) is piecewise linear. Note that it can hap-

pen that, for some (x, ξ), the feasible set of problem (18) is

empty. In that case, by the definition, Q(x, ξ) = +∞. It also can

happen that problem (18) is unbounded from below, and hence

Q(x, ξ) = −∞. That is, we can view Q(x, ξ) as an extended real

valued function.
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Since Q(·, ξ) is a piecewise linear function, it can be differentiable

everywhere only in the trivial case when it is linear. Nevertheless,

if Q(·, ξ) is finite at a point x̄, then it has a nonempty set of

subgradients. The set of all subgradients is called subdifferential

and denoted by ∂Q(x̄, ξ). Recall that z ∈ ∂Q(x̄, ξ) if

Q(x, ξ) ≥ Q(x̄, ξ) + zT(x− x̄), for all x.

The function Q(·, ξ) is differentiable at a point x iff ∂Q(x, ξ) = {z}
is a singleton, in which case ∇xQ(x, ξ) = z. The set ∂Q(x, ξ) is

convex, and since Q(·, ξ) is piecewise linear, is polyhedral. By

duality theory we have that

∂Q(x, ξ) = −TTD(x, ξ), (21)

where D(x, ξ) := arg max
{
πT(h− Tx) : WTπ ≤ q

}
.
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If P has a finite support, then the subdifferential of the expec-

tation function Q(·) is given∗ by

∂Q(x) =
∑K
k=1 pk∂Q(x, ξk). (22)

Therefore, Q(·) is differentiable at x iff all functions Q(·, ξk),

k = 1, ...,K, are differentiable at x. If the probability distribution

P is continuous, then the situation is more subtle. It is possible

to show that if Q(·) is finite valued in a neighborhood of x, then

∂Q(x) =
∫
Ω ∂Q(x, ω)dP (ω). (23)

For a given x, the above integral is understood as the set of all

vectors of the form
∫
ΩG(ω)dP (ω) such that G(ω) ∈ ∂Q(x, ω) is

an integrable selection of ∂Q(x, ω).

∗The summation of the sets is understood here pointwise, i.e., the sum of two sets A and
B is the set {a+ b : a ∈ A, b ∈ B}.
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It follows from (23) that ∂Q(x) is a singleton, and hence Q(·)
is differentiable at x, iff ∂Q(x, ω) is a singleton with probability
one, i.e., for P -almost every ω ∈ Ω.

Loosely speaking we may say that, typically, for continuous dis-
tributions the expectation function E[Q(x, ξ)] is differentiable,
while in the case of discrete distributions it is not.

We can formulate optimality conditions for the stochastic prob-
lem (17) as follows: a feasible point x̄ ∈ X is an optimal solution
of (17) iff

0 ∈ ∂Q(x̄) +NX(x̄), (24)

where NX(x̄) is the normal cone to X at x̄,

NX(x̄) =
{
z : zT(x− x̄) ≤ 0, for all x ∈ X

}
.
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General formulation of two-stage stochastic programming prob-

lems

Min
x∈X

{
f(x) := E[F (x, ω)]

}
, (25)

where F (x, ω) is the optimal value of the second stage problem

Min
y∈X (x,ω)

g(x, y, ω). (26)

Here (Ω,F , P ) is a probability space, X ⊂ Rn, g : Rn×Rm×Ω→ R
and X : Rn ×Ω ⇒ Rm is a multifunction. In particular, the linear

two-stage problem can be formulated in the above form with

g(x, y, ω) := cTx+ q(ω)Ty and

X (x, ω) := {y : T (ω)x+W (ω)y = h(ω), y ≥ 0}. (27)
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The second stage problem (26) can be also written in the fol-

lowing equivalent form

Min
y∈Rm

ḡ(x, y, ω), (28)

where

ḡ(x, y, ω) :=

g(x, y, ω), if y ∈ X (x, ω)

+∞, otherwise.

By the interchangeability principle we have

E
[

inf
y∈Rm

ḡ(x, y, ω)

]
︸ ︷︷ ︸

F (x,ω)

= inf
y∈Y

E
[
ḡ(x,y(ω), ω)

]
, (29)

where Y is a functional space, e.g., Y := Lp(Ω,F , P ; Rm) with

p ∈ [1,+∞].
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Consequently, we can write two-stage problem (25)–(26) as one

large problem:

Min
x∈Rn,y∈Y

E [g(x,y(ω), ω)]

s.t. x ∈ X, y(ω) ∈ X (x, ω) a.e. ω ∈ Ω.
(30)

Nonanticipativity

Consider the first stage problem (25). Assume that the number

of scenarios is finite, i.e., Ω = {ω1, . . ., ωK} with respective (posi-

tive) probabilities p1, . . ., pK. Let us relax the first stage problem

by replacing vector x with K vectors x1, x2, . . . , xK, one for each

scenario. We obtain the following relaxation of problem (25):

Min
x1,...,xK

K∑
k=1

pkF (xk, ωk) subject to xk ∈ X, k = 1, . . .,K. (31)

27



Problem (31) is separable in the sense that it can be split into

K smaller problems, one for each scenario:

Min
xk∈X

F (xk, ωk), k = 1, . . . ,K, (32)

and that the optimal value of problem (31) is equal to the

weighted sum, with weights pk, of the optimal values of problems

(32), k = 1, . . .,K.

The nonanticipativity constraint: (x1, . . ., xK) ∈ L, where

L := {(x1, . . ., xK) : x1 = . . . = xK} ⊂ Rn × · · · × Rn.
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Dualization of the nonanticipativity constraints

Consider the following formulation of stochastic programming

problem (25) (with a finite number of scenarios),

Min
x1,...,xK ,z

K∑
k=1

pkF̄ (xk, ωk) s.t. xk = z, k = 1, ...,K, (33)

where F̄ (xk, ωk) = F (xk, ωk) if xk ∈ X and F̄ (xk, ωk) = +∞ oth-

erwise. The nonaticipativity constraints xk = z, k = 1, ...,K, are

written here with additional variable z. The (Lagrangian) dual

of problem (33) is:

Maxλ1,...,λK

{
infx1,...,xK

∑K
k=1 pk

(
F̄ (xk, ωk) + λT

kxk
)}
,

subject to
∑K
k=1 pkλk = 0.

(34)

29



Note the separable structure

inf
x1,...,xK

K∑
k=1

pk
(
F̄ (xk, ωk) + λT

kxk
)

=
K∑
k=1

pk

[
inf
xk

(
F̄ (xk, ωk) + λT

kxk

)]
.

If the functions Fk(·, ωk) are piecewise linear (e.g., in the case of

linear two-stage stochastic programming), then there is no dual-

ity gap between (33) and (34), and both problems have optimal

solutions provided that their optimal value is finite. Moreover,

if (λ̄1, ..., λ̄K) and (x̄1, ..., x̄K, z̄) are optimal solutions of (33) and

(34), respectively, then x̄1 = ... = x̄K = z̄ and

x̄k ∈ arg min
xk

{
F̄ (xk, ωk) + λ̄T

kxk
}
. (35)
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Multistage models. Consider the newsvendor problem. Sup-
pose now that the company has a planning horizon of T periods.
We model the demand as a random process Dt indexed by the
time t = 1, ..., T . At the beginning, at t = 1, there is (known)
inventory level y1. At each period t = 1, ..., T the company first
observes the current inventory level yt and then places an order
to replenish the inventory level to xt. This results in order quan-
tity xt−yt which clearly should be nonnegative, i.e., xt ≥ yt. After
the inventory is replenished, demand dt is realized and hence the
next inventory level, at the beginning of period t + 1, becomes
yt+1 = xt − dt. We allow backlogging and the inventory level yt
may become negative. The total cost incurred in period t is

ct(xt − yt) + bt[dt − xt]+ + ht[xt − dt]+,
where ct, bt, ht are the ordering cost, holding cost and backorder
penalty cost per unit, respectively, at time t. We assume that
bt > ct > 0 and ht ≥ 0, t = 1, . . . , T .
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The objective is to minimize the expected value of the total cost

over the planning horizon. This can be written as the following

optimization problem

Min
xt≥yt

T∑
t=1

E
{
ct(xt − yt) + bt[Dt − xt]+ + ht[xt −Dt]+

}
s.t. yt+1 = xt −Dt, t = 1, ..., T − 1.

(36)

Consider the demand process Dt, t = 1, ..., T . We denote by

D[t] := (D1, ..., Dt) the history of the demand process up to time t,

and by d[t] := (d1, ..., dt) its particular realization. At each period

(stage) t, our decision about the inventory level xt should depend

only on information available at the time of the decision, i.e., on

an observed realization d[t−1] of the demand process, and not on

future observations. This principle is called the nonanticipativity

constraint.
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At the last stage t = T , for observed inventory level yT , we need

to solve the problem:

Min
xT≥yT

cT (xT−yT )+E
{
bT [DT − xT ]+ + hT [xT −DT ]+

∣∣∣D[T−1] = d[T−1]

}
.

(37)

The expectation in (37) is conditional on the realization d[T−1]

of the demand process prior to the considered time T . The

optimal value (and the set of optimal solutions) of problem (37)

depends on yT and d[T−1], and is denoted QT (yT , d[T−1]). At

stage t = T − 1 we solve the problem

Min
xT−1≥yT−1

cT−1(xT−1 − yT−1)

+ E
{
bT−1[DT−1 − xT−1]+ + hT−1[xT−1 −DT−1]+

+QT
(
xT−1 −DT−1, D[T−1]

) ∣∣∣D[T−2] = d[T−2]

}
.
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Its optimal value is denoted QT−1(yT−1, d[T−2]). Proceeding in

this way backwards in time we write the following dynamic pro-

gramming equations

Qt(yt, d[t−1]) = min
xt≥yt

ct(xt − yt) + E
{
bt[Dt − xt]+

+ ht[xt −Dt]+ +Qt+1

(
xt −Dt, D[t]

) ∣∣∣D[t−1] = d[t−1]

}
,

t = T−1, ...,2. Finally, at the first stage we need to solve problem

Min
x1≥y1

c1(x1−y1)+E
{
b1[D1−x1]++h1[x1−D1]++Q2 (x1 −D1, D1)

}
.

Let x̄t, t = T−1, ...,1, be an optimal solution of the corresponding

dynamic programming equation. We see that x̄t is a function

of yt and d[t−1], for t = 2, ..., T , while the first stage (optimal)

decision x̄1 is independent of the data.
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Under the assumption of the stagewise independence, x̄t = x̄t(yt)

becomes a function of yt alone. Note that yt, in itself, is a func-

tion of d[t−1] = (d1, ..., dt−1) and decisions (x1, ..., xt−1). There-

fore we may think about a sequence of possible decisions xt =

xt(d[t−1]), t = 1, ..., T , as functions of realizations of the demand

process available at the time of the decision (with the convention

that x1 is independent of the data). Such a sequence of decisions

xt(d[t−1]) is called a policy. That is, a policy is a rule which spec-

ifies our decisions, based on information available at the current

stage, for any possible realization of the demand process. By

definition, a policy xt = xt(d[t−1]) satisfies the nonanticipativity

constraint. A policy is said to be feasible if it satisfies other con-

straints with probability one (w.p.1). In the present case a policy

is feasible if xt ≥ yt, t = 1, ..., T , for almost every realization of

the demand process.
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We can formulate optimization problem (36) as the problem of

minimization of the expectation in (36) with respect to all fea-

sible policies. An optimal solution of such problem will give us

an optimal policy. We have that a policy x̄t is optimal if it is

given by optimal solutions of the respective dynamic program-

ming equations. In the present case under the assumption of

stagewise independence, an optimal policy x̄t = x̄t(yt) is a func-

tion of yt alone. Moreover, in that case it is possible to give the

following characterization of the optimal policy. Let x∗t be an

(unconstrained) minimizer of

ctxt+ E
{
bt[Dt−xt]+ +ht[xt−Dt]+ +Qt+1 (xt −Dt)

}
, t = T, ...,1.

(38)

By using convexity of the value functions it is not difficult to

show that x̄t = max{yt, x∗t} is an optimal policy. Such policy is

called the basestock policy.
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Multistage portfolio selection. Suppose that we can rebalance

our portfolio at several, say T , periods of time. That is, at

the beginning we choose values xi0 of our assets subject to the

budget constraint ∑n
i=1 xi0 = W0. (39)

At the period t = 1, ..., T , our wealth is

Wt =
∑n
i=1 ξitxi,t−1, (40)

where ξit = (1 + Rit) and Rit is the return of the i-th asset at

the period t. Our objective is to maximize the expected utility

Max E [U(WT )] (41)

at the end of the considered period, subject to the balance con-

straints
∑n
i=1 xit = Wt and xt ≥ 0, t = 0, ..., T − 1.
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We use notation xt = (x1t, ..., xnt) and ξt = (ξ1t, ..., ξnt), and

ξ[t] = (ξ1, .., ξt) for the history of the process ξt up to time t.

The values of the decision vector xt, chosen at stage t, may

depend on the information ξ[t] available up to time t, but not on

the future observations. Dynamic programming equations: the

cost-to-go function Qt(Wt, ξ[t]) is given by the optimal value of

Max
xt≥0,Wt+1

E
{
Qt+1(Wt+1, ξ[t+1])

∣∣∣ξ[t]

}

s.t. Wt+1 =
n∑
i=1

ξi,t+1xi,t,
n∑
i=1

xi,t = Wt.
(42)

If the process ξt is stagewise independent, i.e., ξt is (stochasti-

cally) independent of ξ1, ..., ξt−1, for t = 2, ..., T , then the cost-

to-go (value) function Qt(Wt), t = 1, ..., T − 1, does not depend

on ξ[t].
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Multistage stochastic programming. We can write the two-stage
problem using the following nested formulation:

Min
Ax=b, x≥0

cTx+ E
[

Min
Tx+Wy=h, y≥0

qTy

]
. (43)

In the above, y = y(ξ) is considered as a function of the random
data ξ = (q, T,W, h) and in that sense is random. If the number
of scenarios is finite, we associate with every possible realization
ξk of the data the corresponding second stage decision variable
yk. This can be extended to the following nested formulation of
a multistage stochastic programming problem:

Min
x1∈X

f1(x1) + E
[

Min
x2∈X2(x1,ξ2)

f2(x2, ξ2) + · · ·

+E
[

Min
xT∈XT (xT−1,ξT )

fT (xT , ξT )
] ]
,

(44)

where ξ1, ..., ξT is a random process (ξ1 is deterministic).
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For example, in the linear case ft(xt, ξt) := cTt xt,

Xt(xt−1, ξt) := {xt : Btxt−1 +Atxt = bt, xt ≥ 0} ,

ξt = (ct, Bt, At, bt), t = 2, ..., T, is considered as a random process,

ξ1 = (c1, A1, b1) is supposed to be known, and hence the nested

formulation can be written as

Min
A1x1=b1
x1≥0

cT1x1+E

 Min
B2x1+A2x2=b2

x2≥0

cT2x2 + · · ·+ E
[

Min
BTxT−1+ATxT=bT

xT≥0

cTTxT

] .
(45)

If the number of realizations (scenarios) of the process ξt is finite,

then problem (45) can be written as one large linear program-

ming problem. There are several possible formulations of the

above multistage program.
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Dynamic programming equations Consider the last stage prob-

lem

Min
xT∈XT (xT−1,ξT )

fT (xT , ξT ). (46)

The optimal value of this problem, denoted QT (xT−1, ξT ), de-

pends on the decision vector xT−1 and data ξT . At stage t =

2, ..., T − 1, we write the problem:

Min
xt

ft(xt, ξt) + E
{
Qt+1

(
xt, ξ[t+1]

) ∣∣∣ξ[t]

}
s.t. xt ∈ Xt(xt−1, ξt).

(47)

Its optimal value depends on the decision xt−1 at the previ-

ous stage and realization of the data process ξ[t], and denoted

Qt
(
xt−1, ξ[t]

)
. The idea is to calculate the (so-called cost-to-go

or value) functions Qt
(
xt−1, ξ[t])

)
, recursively, going backward in

time.
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At the first stage we finally need to solve the problem:

Min
x1∈X

f1(x1) + E [Q2 (xt, ξ2)] . (48)

The dynamic programming equations:

Qt
(
xt−1, ξ[t]

)
= inf

xt∈Xt(xt−1,ξt)

{
ft(xt, ξt) +Qt+1

(
xt, ξ[t]

) }
, (49)

where

Qt+1

(
xt, ξ[t]

)
:= E

{
Qt+1

(
xt, ξ[t+1]

) ∣∣∣ξ[t]

}
.

If the random process is Markovian (i.e., the conditional distribu-

tion of ξt+1 given ξ[t] = (ξ1, ..., ξt) is the same as the conditional

distribution of ξt+1 given ξt), then Qt
(
xt−1, ξt

)
is a function of

xt−1 and ξt, and if it is stagewise independent (i.e., ξt+1 is inde-

pendent of ξ[t]), then E
[
Qt+1

(
xt, ξt+1

) ∣∣∣ξt] = Qt+1(xt) does not

depend on ξt.
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A sequence of (measurable) mappings xt(ξ[t]), t = 1, ..., T , is

called a policy (recall that ξ1 is deterministic). A policy is said

to be feasible if it satisfies the feasibility constraints, i.e.,

xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, ..., T, w.p.1. (50)

We can formulate the multistage problem (44) in the form

Min
x1,x2(·),...,xT (·)

E
[
f1(x1) + f2(x2(ξ2), ξ2) + ...+ fT

(
xT (ξ[T ]), ξT

) ]
s.t. x1 ∈ X, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, ..., T.

Note that the above optimization is performed over feasible poli-

cies. A policy x̄t(ξ[t]) is optimal if it satisfies the dynamic pro-

gramming equations, i.e.,

x̄t(ξ[t]) ∈ arg min
xt∈Xt

(
x̄t−1(ξ[t−1]),ξt

) {ft(xt, ξt)+Qt+1

(
xt, ξ[t]

) }
, w.p.1.
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Consider the relaxed version of the linear multistage program

(with finite number of scenarios):

Min
K∑
k=1

pk

[
cT1x

k
1 + (ck2)Txk2 + (ck3)Txk3 + . . . + (ckT )TxkT

]
s.t. A1x

k
1 = b1,

Bk2x
k
1 + Ak2x

k
2 = bk2,

Bk3x
k
2 + Ak3x

k
3 = bk3,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BkTx
k
T−1 + AkTx

k
T = bkT ,

xk1 ≥ 0, xk2 ≥ 0, xk3 ≥ 0, . . . xkT ≥ 0,
k = 1, . . . ,K.

44



In this problem all parts of the decision vector are allowed to

depend on all parts of the random data, while each part xt should

be allowed to depend only on the data known up to stage t.

In order to correct this problem we should remember that at

stage t = 1, . . . , T , the scenarios that have the same history ξ[t]

cannot be distinguished, so we need to enforce the nonanticipa-

tivity constraints:

xkt = x`t for all k, ` for which ξk[t] = ξ`[t], t = 1, . . . , T. (51)

Together with the nonanticipativity constraints (51) the consid-

ered problem becomes equivalent to the original formulation.
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Complexity of stochastic programs
Consider a two-stage stochastic programming problem. Even a
crude discretization of the distribution of the random data vec-
tor ξ typically results in an exponential growth of the number
of scenarios with increase of the number of random variables
(dimension of ξ). The standard approach to dealing with this
issue is to generate a manageable number of scenarios in some
“representitative” way. For example, we can generate a random
sample ξ1, ..., ξN of N realizations of the random vector ξ by us-
ing Monte Carlo sampling techniques. Then the expected value
function f(x) := E[F (x, ξ)] can be approximated by the sample
average function

f̂N(x) :=
N∑
j=1

pjF (x, ξj),

where pj := 1/N , j = 1, ..., N .
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Consequently the true (expected value) problem stochastic prob-

lem can be approximated by the so-called sample average approx-

imating (SAA) problem:

Min
x∈X

f̂N(x). (52)

Note that once the sample is generated, the above SAA problem

can be viewed as a two-stage problem with the corresponding

set of scenarios
{
ξ1, ..., ξN

}
each scenario with equal probability

1/N . A (naive) justification of the SAA method is that by the

Law of Large Numbers, f̂N(x) converges to f(x) w.p.1 as N

tends to infinity. It is possible to show that, under mild regularity

conditions, it follows that the optimal value v̂N and an optimal

solution x̂N of the SAA problem (52) converge w.p.1 to their

counterparts of the true problem.
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It is known, however, that the convergence of Monte Carlo sam-

pling based estimators is notoriously slow. By the Central Limit

Theorem, for a fixed x ∈ X, the estimate f̂N(x) converges to f(x)

at a stochastic rate of Op(N−1/2). This indicates that by using

Monte Carlo sampling techniques it is not possible to evaluate

the expected value f(x) very accurately.

By using Large Devitions exponential bounds it is possible to

show that for given α ∈ (0,1), ε > 0 and δ ∈ [0, α), the following

estimate of the sample size N :

N ≥
O(1)σ2

(ε− δ)2

[
n log

(
O(1)DL

(ε− δ)2

)
+ log

(
1

α

)]
(53)

guarantees that with probability at least 1 − α any δ-optimal

solution of the SAA problem is an ε-optimal solution of the true

problem.
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Here O(1) is a generic constant, D is the diameter of the fea-
sible set X (assumed to be finite), L is a Lipschitz constant of
F (·, ξ) on X (holding for all ξ ∈ Ξ), and σ2 is a constant rep-
resenting a certain measure of variability of the objective func-
tion F (x, ξ)). That is, it is assumed that the moment gen-
erating function M(t) := E[etZ] of the random variable Z :=
F (x′, ξ)− F (x, ξ)− [f(x)− f(x′)] satisfies

M(t) ≤ exp
(
σ2t2/2

)
, ∀t ∈ R.

It is also assumed that the expected value function f(x) is finite
valued for all x ∈ X. Note that this implies that the recourse
is relatively complete. In a sense, the sample size bound (53)
gives an estimate of complexity of solving the true problem. It
is proportional to the dimension n of the decision vector x and
to (σ/ε)2, while the other parameters appear on the logarithmic
scale.
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Stochastic Approximation (SA) approach

Suppose that the problem is convex, i.e., the feasible set X is

convex and F (·, ξ) is convex for all ξ ∈ Ξ. Classical SA algorithm

xj+1 = ΠX(xj − γjG(xj, ξ
j)),

where G(x, ξ) ∈ ∂xF (x, ξ) is a calculated gradient, ΠX is the or-

thogonal (Euclidean) projection onto X and γj = θ/j. Theoreti-

cal bound (assuming f(·) is strongly convex and differentiable)

E[f(xj)− v∗] = O(j−1),

for an optimal choice of constant θ (recall that v∗ is the optimal

value of the true problem). This algorithm is very sensitive to

choice of θ, does not work well in practice.
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Robust SA approach (B. Polyak, 1990). Constant step size vari-
ant: fixed in advance sample size (number of iterations) N and
step size γj ≡ γ, j = 1, ..., N : x̃N = 1

N

∑N
j=1 xj. Theoretical bound

E[f(x̃N)− v∗] ≤
D2
X

2γN
+
γM2

2
,

where DX = maxx∈X ‖x− x1‖2 and M2 = maxx∈X E‖G(x, ξ)‖22.
For optimal (up to factor θ) γ = θDX

M
√
N

we have

E
[
f(x̃N)− v∗

]
≤
DXM

2θ
√
N

+
θDXM

2
√
N
≤
κDXM√

N
,

where κ = max{θ, θ−1}. By Markov inequality it follows that

Prob {f(x̃N)− v∗ > ε} ≤
κDXM

ε
√
N

,

and hence to the sample size estimate N ≥ κ2D2
XM

2

ε2α2 .
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Mirror Decent SA method (Nemirovski)

Let ‖·‖ be a norm on Rn and ω(x) be a continuously differentiable

strongly convex on X with respect to ‖ · ‖, i.e., for x, x′ ∈ X:

ω(x′) ≥ ω(x) + (x′ − x)T∇ω(x) + 1
2
c‖x′ − x‖2.

Prox mapping Px : Rn → X:

Px(y) = arg min
z∈X

{
ω(z) + (y −∇ω(x))Tz

}
.

For ω(x) = 1
2
‖x‖2 we have that Px(y) = ΠX(x− y). Set

xj+1 = Pxj(γjG(xj, ξ
j)).

52



For constant step size γj = γ, j = 1, ..., N , with optimal

γ =
Dω,X

M∗

√
2c

N
,

where M∗ = maxx∈X E‖G(x, ξ)‖2∗, with dual norm ‖ · ‖∗, and

x̃N = N−1
N∑
j=1

xj

we have

E
[
f(x̃N)− v∗

]
≤ Dω,X

√
2M2
∗

cN
,

where

Dω,X =
[
max
z∈X

ω(z)−min
x∈X

ω(x)
]1/2

.
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Validation analysis How one can evaluate quality of a given
solution x̂ ∈ X? Two basic approaches: (1) Evaluate the gap
f(x̂)− v∗, where v∗ is the optimal value of the true problem. (2)
Verify the KKT optimality conditions at x̂.

Statistical test based on estimation of f(x̂) − v∗: (i) Estimate
f(x̂) by the sample average f̂N ′(x̂), using sample of a large size
N ′. (ii) Solve the SAA problem M times using M independent
samples each of size N . Let v̂

(1)
N , ..., v̂

(M)
N be the optimal val-

ues of the corresponding SAA problems. Estimate E[v̂N ] by the
average M−1∑M

j=1 v̂
(j)
N . Note that v∗ − E[v̂N ] ≥ 0 and

E
[
f̂N ′(x̂)−M−1∑M

j=1 v̂
(j)
N

]
= (f(x̂)− v∗) + (v∗ − E[v̂N ]) .

Also E[v̂N ] = E
[
M−1∑M

j=1 v̂
(j)
N

]
and hence v∗ − E[v̂N ] represents

the bias of the above average viewed as an estimator of v∗.
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KKT statistical test Let

X := {x ∈ Rn : ci(x) = 0, i ∈ I, ci(x) ≤ 0, i ∈ J} .

Suppose that the probability distribution is continuous. Then
F (·, ξ) is differentiable at x̂ w.p.1 and

∇f(x̂) = EP [∇xF (x̂, ξ)] .

KKT-optimality conditions at an optimal solution x0 ∈ S0 can
be written as follows:

−∇f(x0) ∈ C(x0),

where

C(x) :=

y =
∑

i∈I∪J(x)

λi∇ci(x), λi ≥ 0, i ∈ J(x)

 ,
and J(x) := {i : ci(x) = 0, i ∈ J}.
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The idea of the KKT test is to estimate the distance

δ(x̂) := dist (−∇f(x̂), C(x̂)) ,

by using the sample estimator

δ̂N(x̂) := dist
(
−∇f̂N(x̂), C(x̂)

)
.

The covariance matrix of ∇f̂N(x̂) can be estimated (from the

same sample), and hence a confidence region for ∇f(x̂) can be

constructed. This allows a statistical validation of the KKT

conditions.
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Complexity of multistage stochastic programming

Conditional sampling. Let ξi2, i = 1, ..., N1, be an iid random

sample of ξ2. Conditional on ξ2 = ξi2, a random sample ξ
ij
3 ,

j = 1, ..., N2, is generated and etc. The obtained scenario tree

is considered as a sample approximation of the true problem.

Note that the total number of scenarios N =
∏T−1
t=1 Nt and each

scenario in the generated tree is considered with the same prob-

ability 1/N . Note also that in the case of between stages in-

dependence of the corresponding random process, we have two

possible strategies. We can generate a different (independent)

sample ξ
ij
3 , j = 1, ..., N2, for every generated node ξi2, or we can

use the same sample ξj3, j = 1, ..., N2, for every ξi2. In the second

case we preserve the between stages condition for the generated

scenario tree.
57



For T = 3, under certain regularity conditions, for ε > 0 and

α ∈ (0,1), and the sample sizes N1 and N2 satisfying

O(1)
[(
D1L1
ε

)n1
exp

{
− O(1)N1ε

2

σ2
1

}
+
(
D2L2
ε

)n2
exp

{
−O(1)N2ε

2

σ2
2

} ]
≤ α,

we have that any first-stage ε/2-optimal solution of the SAA

problem is an ε-optimal first-stage solution of the true problem

with probability at least 1− α.
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In particular, suppose that N1 = N2 and take L := max{L1, L2},
D := max{D1, D2}, σ2 := max{σ2

1, σ
2
2} and n := max{n1, n2}.

Then the required sample size N1 = N2:

N1 ≥
O(1)σ2

ε2

[
n log

(
O(1)DL

ε

)
+ log

(
1

α

)]
,

with total number of scenarios N = N2
1 . This indicates that the

total number of scenarios needed to solve a T -stage stochastic

program with a reasonable accuracy by the SAA method grows

exponentially with increase of the number of stages T .

59



Risk-averse approach Consider the following formulation of the

financial planning problem:

Max
x≥0

E[W1]− λD[W1] s.t.
n∑
i=1

xi = W0, (54)

where D[W1] is a measure of dispersion (variability) of W1 and λ ≥
0 represents a compromise weight between maximizing returns

and minimizing risk of investment.

Markowitz (1952) approach: take D[W1] := Var[W1]. In the

present (linear) case

Var[W1] = Var
[∑n

i=1 ξixi
]

= xTΣx,

where Σ is the covariance matrix of ξ.
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This gives the following (equivalent) formulations of the corre-

sponding risk-averse problem:

Maxx≥0
∑n
i=1 µixi − λx

TΣx
s.t.

∑n
i=1 xi = W0,

Minx≥0 xTΣx
s.t.

∑n
i=1 µixi ≥ τ,

∑n
i=1 xi = W0,

Maxx≥0
∑n
i=1 µixi

s.t.
∑n
i=1 xi = W0, x

TΣx ≤ γ.
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Min-max approach to stochastic programming:

Min
x∈X

{
f(x) := sup

µ∈A
Eµ[F (x, ω)]

}
,

where F : Rn × Ω → R and A is a set of probability measures
(distributions) on the sample space (Ω,F).

Optimization of mean-risk models:

Min
x∈X

ρ[Fx(ω)],

where ρ : Z → R ∪ {+∞} is a mean-risk function, Z is a (linear)
space of “allowable” functions Z(ω) and Fx(·) = F (x, ·) ∈ Z for
all x ∈ X.

Markowitz’s approach: ρ(Z) := E[Z] + cVar[Z], Z ∈ Z, where
c > 0 is a weight constant (note that here we deal with mini-
mization, rather than maximization, problem).
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Axiomatic approach (coherent measures of risk), by Artzner, Del-

baen, Eber, Heath (1999):

(A1) Convexity:

ρ(αZ1 + (1− α)Z2) ≤ αρ(Z1) + (1− α)ρ(Z2)

for all Z1, Z2 ∈ Z and α ∈ [0,1].

(A2) Monotonicity: If Z1, Z2 ∈ Z and Z2 ≥ Z1, then ρ(Z2) ≥
ρ(Z1).

(A3) Translation Equivariance: If a ∈ R and Z ∈ Z, then ρ(Z +

a) = ρ(Z) + a.

(A4) Positive Homogeneity:

ρ(αZ) = αρ(Z), Z ∈ Z, α > 0.
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Space Z is paired with a linear space Y of finite signed measures

on (Ω,F) such that the scalar product (bilinear form)

〈µ,Z〉 :=
∫

Ω
Z(ω)dµ(ω)

is well defined for all Z ∈ Z and µ ∈ Y. Typical examples Z :=

Lp(Ω,F , P ) and Y := Lq(Ω,F , P ), where p, q ∈ [1,+∞] such that

1/p + 1/q = 1, and P is a probability (reference) measure on

(Ω,F).

Dual representation of risk functions

By Fenchel-Moreau theorem if ρ is convex (assumption (A1))

and lower semicontinuous, then

ρ(Z) = supµ∈A {〈µ,Z〉 − ρ∗(µ)} ,
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where

ρ∗(µ) := supZ∈Z {〈µ,Z〉 − ρ(Z)} ,
A := dom(ρ∗) = {µ ∈ Y : ρ∗(µ) < +∞} .

It is possible to show that condition (A2) (monotonicity) holds iff

µ � 0 for every µ ∈ A. Condition (A3) (translation equivariance)

holds iff µ(Ω) = 1 for every µ ∈ A. If ρ is positively homogeneous,

then ρ∗(µ) = 0 for every µ ∈ A. If conditions (A1)–(A4) hold,

then A is a set of probability measures and

ρ(Z) = supµ∈AEµ[Z].

Consequently, problem Minx∈X ρ[F (x, ω)] is equivalent to the

min-max problem.
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Chance constrained problem:

Min
x∈X

f(x) subject to p(x) ≤ α,

where X ⊂ Rn is a closed set, f : Rn → R is a continuous function,

α ∈ (0,1) is a given significance level, ξ is a random vector,

whose probability distribution P is supported on set Ξ ⊂ Rd,
C : Rn ×Ξ→ R and

p(x) := Prob
{
C(x, ξ) > 0

}
is the probability that constraint is violated at point x ∈ X.

Several chance constraints

Prob
{
Ci(x, ξ) ≤ 0, i = 1, ..., q

}
≥ 1− α,

can be reduced to one chance constraint by employing the max-

function C(x, ξ) := max1≤i≤q Ci(x, ξ).
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Example of portfolio selection. Consider the problem

Max
x≥0

n∑
i=1

µixi s.t.
n∑
i=1

xi = W0, Prob


n∑
i=1

ξixi ≥ b

 ≥ 1− α,

where ξ = (ξ1, ..., ξn) is vector of random returns and µi = E[ξi].
If random vector ξ has a multivariate normal distribution, ξ ∼
N(µ,Σ), then W1 =

∑n
i=1 ξixi ∼ N(

∑n
i=1 µixi, x

TΣx) and

Prob{W1 ≥ b} = Prob

{
Z ≥

b−
∑n
i=1 µixi√
xTΣx

}
= Φ

(∑n
i=1 µixi − b√
xTΣx

)
,

where Z ∼ N(0,1) and Φ(z) = Prob(Z ≤ z). Therefore we can
write the chance constraint in the form

b−
n∑
i=1

µixi + zα

√
xTΣx ≤ 0,

where zα := Φ−1(1− α) (if 0 < α ≤ 1/2).
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There is a serious numerical problem with chance constraints.

First, it is usually difficult even to check whether or not a given

chance constraint is satisfied at a given point x ∈ X. Second, the

feasible set of a chance constraint is convex only in very special

cases. For example, the set

Prob
{
Ci(x, ξ) ≤ 0, i = 1, ..., q

}
≥ 1− α,

is convex if Ci(x, ξ) are convex (jointly in x and ξ) and ξ has an

α-concave distribution (Prékopa).

Two approaches to deal with chance constraints: sampling and

convex approximations.
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Generate a random sample ξ1, . . . , ξN of N realizations of ran-
dom vector ξ (by Monte Carlo sampling techniques) and consider
problem

Min
x∈X

f(x) subject to C(x, ξj) ≤ 0, j = 1, ..., N. (55)

If the set X and functions f(·), C(·, ξ), ξ ∈ Ξ, are convex, then
this is a convex problem.

Theorem 1 (Calafiore, Campi, Garatti) Suppose that the con-
vexity condition holds and let x̄N be an optimal solution of the
above problem (55). Then

Prob {p(x̄N) > α} ≤ B(n− 1;α,N),

where

B(k;α,N) :=
k∑
i=0

(
N

i

)
αi(1− α)N−i, k = 0, ..., N.
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By Chernoff inequality

B(n− 1;α,N) ≤ exp

{
−

(Nα− n+ 1)2

2αN

}
.

It follows that for β ∈ (0,1) and

N ≥ 2α−1 log(1/β),

we are guaranteed with probability at least 1 − β that x̄N is

a feasible point of the true problem. This result only ensures

feasibility of x̄N , doesn’t say anything about optimality.
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Note that p(x) = EP [1l(0,∞)(C(x, ξ))]. The corresponding sample

average approximation:

p̂N(x) =
1

N

N∑
j=1

1l(0,∞)

(
C(x, ξj)

)
is equal to the proportion of times that C(x, ξj) > 0. The SAA

problem

Min
x∈X

f(x) s.t. p̂N(x) ≤ γ. (56)

Note that we can use the significance level γ, of the SAA problem

(56), different from α.

If γ = α, then under mild regularity conditions, an optimal so-

lution x̂N of the SAA problem converges w.p.1 to the set of

optimal solutions of the true problem.
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For a point x̄ ∈ X we have that p̂N(x̄) ≤ γ, i.e., x̄ is a feasible

point of the SAA problem, iff no more than γN times the event

“C(x̄, ξj) > 0” happens in N trials. Since probability of the event

“C(x̄, ξj) > 0” is p(x̄), it follows that

Prob
{
p̂N(x̄) ≤ γ

}
= B

(
bγNc; p(x̄), N

)
.

By Chernoff inequality for k > Np,

B(k; p,N) ≥ 1− exp
{
−N(k/N − p)2/(2p)

}
.

It follows that if p(x̄) ≤ α and γ > α, then 1 − Prob
{
p̂N(x̄) ≤ γ

}
approaches zero at a rate of exp(−κN), where κ := (γ−α)2/(2α).

Similarly, if p(x̄) = α and γ < α, then probability that x̄ is a

feasible point of the corresponding SAA problem approaches zero

exponentially fast.
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Optimality bounds

Given a point candidate solution x̄ ∈ X how to verify its opti-

mality. In order to verify feasibility of x̄ we need to estimate the

probability p(x̄). By Monte Carlo sampling techniques, generate

an iid sample ξ1, ..., ξN and estimate p(x̄) by p̂N(x̄). Approximate

(1− β)-confidence upper bound on p(x̄):

Uβ,N(x̄) := p̂N(x̄) + zβ

√
p̂N(x̄)(1− p̂N(x̄))/N.

A more accurate (1− β)-confidence upper bound is given by

U∗β,N(x̄) := sup
ρ∈[0,1]

{ρ : B(k; ρ,N) ≥ β} ,

where k := Np̂N(x̄) =
∑N
j=1 1l(0,∞)

(
G(x̄, ξj)

)
.
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Lower bound for the optimal value

Choose two positive integers M and N , and let L be the largest

integer such that

B(L− 1; θN ,M) ≤ β,

where θN := B
(
bγNc;α,N

)
. Note that θN = (1 − α)N for γ =

0. Next generate M independent samples ξ1,m, . . . , ξN,m, m =

1, . . . ,M , each of size N , of random vector ξ. For each sample

solve the associated optimization problem

Min
x∈X

f(x) subject to
N∑
j=1

1l(0,∞)

(
C(x, ξj,m)

)
≤ γN,

and hence calculate its optimal value ϑ̂mN , m = 1, . . . ,M . That is,

solve M times the corresponding SAA problem at the significance

level γ.
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We can view ϑ̂mN , m = 1, . . . ,M , as an iid sample of the random

variable ϑ̂N , where ϑ̂N is the optimal value of the respective SAA

problem at significance level γ. Next we rearrange the calculated

optimal values in the nondecreasing order ϑ̂
(1)
N ≤ · · · ≤ ϑ̂

(M)
N .

We use the random quantity ϑ̂
(L)
N as a lower bound of the true

optimal value ϑ∗. It is possible to show that with probability at

least 1 − β, the random quantity ϑ̂
(L)
N is below the true optimal

value ϑ∗, i.e., ϑ̂(L)
N is indeed a lower bound of the true optimal

value with confidence at least 1− β.
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Convex approximations

Consider chance constraint:

Prob
{
C(x, ξ) > τ

}
≤ α. (57)

Let Zx = C(x, ξ) − τ and ψ : R → R+ be nondecreasing, convex
function such that ψ(·) ≥ 1l(0,∞)(·). We have that

Prob
{
C(x, ξ) > τ

}
= E

[
1l(0,∞)(Zx)

]
and

inf
t>0

E[ψ(tZx)] ≥ E
[
1l(0,∞)(Zx)

]
,

and hence

inf
t>0

E[ψ(tZx)] ≤ α (58)

is a conservative approximation of the chance constraint (57).
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The choice ψ(z) := [1 + z]+ gives best conservative approxima-

tion. For this choice of ψ, (58) is equivalent to

inf
t∈R

{
t+ α−1E[Zx − t]+

}
︸ ︷︷ ︸

CVaRα(Zx)

≤ 0. (59)

Note that the minimum in the left hand side of (59) is attained

at t∗ = VaR1−α(Zx), where

VaR1−α(Z) = F−1
Z (1− α) := inf {t : FZ(t) ≥ 1− α} ,

with FZ(t) := Prob(Z ≤ t) being the cdf of Z.
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