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Abstract

We present a generic, semi-automated algorithm for generating non-uniform coarse
grids for modeling subsurface flow. The method is applicable to arbitrary grids and
does not impose smoothness constraints on the coarse grid. One therefore avoids
conventional smoothing procedures that are commonly used to ensure that the grids
obtained with standard coarsening procedures are not too rough. The coarsening al-
gorithm is very simple and essentially involves only two parameters that specify the
level of coarsening. Consequently the algorithm allows the user to specify the simula-
tion grid dynamically to fit available computer resources, and, e.g., use the original
geomodel as input for flow simulations. This is of great importance since coarse
grid-generation is normally the most time-consuming part of an upscaling phase,
and therefore the main obstacle that has prevented simulation workflows with user-
defined resolution. We apply the coarsening algorithm to a series of two-phase flow
problems on both structured (Cartesian) and unstructured grids. The numerical
results demonstrate that one consistently obtains significantly more accurate re-
sults using the proposed non-uniform coarsening strategy than with corresponding
uniform coarse grids with roughly the same number of cells.
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1 Introduction

To visualize and quantify fluid flow in heterogeneous subsurface reservoirs (e.g., ground-
water and petroleum reservoirs), it is common to perform numerical flow simulations. To
this end, statistical descriptions of the subsurface formations are built using geomodeling
software tools. Unfortunately the number of cells in the geological grid-model (geomodel)
that estimate the spatial distribution of reservoir parameters very often exceed the capa-
bilities of flow simulators. Hence, rather than using the original geomodel as input, cur-
rent simulators normally take as input coarsened and simplified models derived through
an upscaling process. These upscaled models consist of a coarsened grid accompanied by
a corresponding set of reservoir parameters. The simulation model then consists of the
upscaled geomodel combined with an elliptic (or parabolic) equation modeling pressure
and flow velocity, and a set of mass balance equations modeling the transport. In this
paper we focus on immiscible flow so that by transport we refer to movement of phases –
aqueous, liquid, or vapor – and not dispersion of different components within each phase.

Coarsened grids obtained by upscaling are usually constrained to be on a specific grid
format, e.g., corner-point grid format (“logically hexahedral grids”) or PEBI grid format
(“orthogonal Voronoi grids”). This is partly due to grid-constraints associated with the
numerical methods employed to discretize the governing system of partial differential
equations, in particular the pressure equation, and partly because most techniques for
upscaling permeability are designed for grids with hexahedral (shoe-box shaped) grid
blocks. The widely used two-point finite volume method, for instance, is designed for
so-called K-orthogonal grids, meaning that the connections between cell centers are K-
perpendicular to the cell faces. In general, grid constraints make it very difficult to build
grids that capture the important features in the underlying geomodels in an appropriate
way. Indeed, upscaled subsurface flow models often fail to capture important small scale
structures that have profound impact on the resulting flow regime, such as narrow high-
flow channels and shale barriers (low permeable obstacles).

Grid generation procedures that tune the coarse grid to dominant geological features have
been proposed by several authors, see e.g., [13,15,19] and the references therein. The basic
goal in these methods is often to generate grids that are more finely gridded in regions
of particular importance, e.g., around wells and in high flow regions. However, although
these techniques do offer better resolution in regions of interest, and in general provide
more robust upscaled models, they tend to suffer from lack of grid flexibility. Flow-based
grid generation approaches, for instance, are often limited to two-dimensional applica-
tions. Moreover, because flow paths in heterogeneous formations may be highly irregular,
flow-based grid generation approaches generally require a grid-smoothing procedure. Fi-
nally, because grid lines in the coarsened grid usually do not align with grid lines in the
underlying geomodel grid, it is often necessary to perform resampling of geological data.

In this paper we propose a semi-automated grid-coarsening strategy for subsurface flow
applications that can be applied to both structured and unstructured geomodel grids.
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The basic idea is to develop a generic all-applicable version of the non-uniform coarsening
approach introduced by Durlofsky, Jones, and Milliken [10]. Here the coarse grid is gen-
erated by selectively grouping cells in the geomodel. We require only that the cells in the
coarse grid are connected, have at least some minimum volume, and that the total flow
through each coarse cell is bounded above. Because only the transport is computed on
this grid, we avoid conventional constraints (e.g., whereas the approach of Durlofsky et al.
was based on simply removing grid lines in two-dimensional Cartesian grids, thus obtain-
ing a non-uniform Cartesian grid, we here allow coarse cells with arbitrary shape). The
transport is modeled using a two-scale version of a first-order upstream weighted finite
volume method. This scheme requires, in principle, only that the grid cells are connected
and that the velocity field is mass conservative on this grid.

To model pressure and velocity we employ here a mimetic finite difference method on
the geomodel. Hence, we propose that the pressure equation is solved on the geomodel
grid, whereas the phase-transport equation is solved on a coarsened grid. This can be
justified for oil-water two-phase flow scenarios because the pressure generally changes at
a moderate pace so that one can use much larger time-steps for the pressure equation
than for the phase-transport equations [8]. However, for flows with strong dynamics, e.g.,
three phase flow with a separate gas-phase, and for very large geomodels, it may be too
computationally expensive to solve the pressure equation directly on the geomodel. For
these cases, a more efficient alternative is to use a multiscale method capable of providing
mass-conservative velocity fields on the geomodel, e.g., [1,5,14]. The key observation is
that a velocity field that is mass conservative on the geomodel is also mass conservative
on any grid with cells that consist of a connected collection of cells in the geomodel.

We will start by introducing the model problem, which is a model for incompressible
and immiscible two-phase flow. Next, in Section 3 we present the non-uniform coarsening
algorithm and discuss applicability and limitations and possible implications. We also
provide some analysis to give an insight into why the coarsening algorithm provides more
accurate simulation results. In Sections 4 and 5 we describe the discretization of the model
equations and report the results of the numerical experiments, respectively. The examples
range from relatively simple two-dimensional Cartesian models to models with complex
channelized heterogeneous structures and unstructured corner-point grid models. Finally,
we review the main observations and make some concluding remarks in Section 6.

2 Mathematical model

We consider immiscible and incompressible two-phase flow without gravity and capillary
pressure effects. The equations are derived from conservation of mass for each phase:

φ
∂Sj

∂t
+ ∇ · vj = qj, (1)
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where the phase velocities vj are given by Darcy’s law:

vj = −λj(Sj)K∇pj. (2)

Here φ is the porosity, Sj is the j-phase saturation (fraction of the void occupied by
phase j) and qj is a source (or sink) term. In Darcy’s law, K is the permeability tensor,
pj is the phase pressure, and λj(Sj) = krj(Sj)/µj, where krj and µj are the relative
permeability and viscosity of phase j respectively. The relative permeability models the
reduced conductivity of a phase due to the presence of other phases and is assumed to
be function of the saturations only. The porosity is taken to be constant, i.e., the rock is
assumed to be rigid and non-deforming.

Let the two phases be oil and water (j = o, w). Since we neglect capillary pressure effects
so that ∇po = ∇pw, we assume po = pw = p. Then the Darcy equations without gravity
effects combined with conservation of mass yields the pressure equation:

v = −λ(Sw, So)K∇p,

∇ · v = q,
(3)

where v = vw + vo, λ = λw + λo, and q = qw + qo.

Assume now that the two phases fill the void space completely, i.e., that Sw +So = 1, and
introduce the water fractional flow fw(Sw) = λw(Sw)/λ(Sw, 1−Sw). Then the conservation
equation for water, henceforth called the saturation equation, reads as follows:

φ
∂Sw

∂t
+ ∇ · (fwv) = qw. (4)

The system of equations (3)–(4) will be solved using a sequential splitting, i.e., the pressure
equation is solved at the current time-step using saturation values from the previous time-
step. Moreover, for ease of notation, we will henceforth drop the w-subscript of Sw.

3 Grid coarsening strategy

In the current section we seek to develop a grid coarsening strategy based on the following
principles (B refers to a cell in the coarsened grid, henceforth called a block):

• The grid should separate high flow regions from low flow regions.
• The volume of a cell in the coarse grid should not be too small.
• The total amount of flow through a single cell in the coarse grid should not be too large.

Hence, after separating high-flow regions from low-flow regions, we will refine blocks that
are too large, and merge blocks that are too small with a neighboring block. The refinement
strategy is based on imposing an upper bound on the total flow through each block rather
than a bound on the total volume. Thus, the coarsening algorithm involves two parameters
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that should be tuned to give the intended degree of coarsening: NL (lower bound on
volume of blocks), and NU (upper bound on total amount of flow in blocks). To quantify
the amount of flow through each block we introduce the following monitoring function:

g(v) = [log |v| − min(log |v|) + 1] .

The various steps in the coarsening algorithm now reads as follows:

Algorithm 1 Non-uniform coarsening of heterogeneous geomodels

1: Introduce coloring of cells based on the logarithm of the velocity:

Ci = {cells with color i} = {c : mv + (i− 1)Dv < log |v(c)| < mv + iDv}.

Here mv = min(log |v|) and Dv = (max(log |v|)−mv)/10. Create an initial grid where
each block B is a connected collection of cells in the fine grid with the same color.

2: If |B| < NL|Ω|/N , then merge B with a neighboring block B ′ for which

∣

∣

∣

∣

∣

1

|B|

∫

B
g(v) dx−

1

|B′|

∫

B′

g(v) dx

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

1

|B|

∫

B
g(v) dx−

1

|B′′|

∫

B′

g(v) dx

∣

∣

∣

∣

∣

for all other neighboring blocks B ′′. Here Ω is the computational domain (the reser-
voir), N is the total number of cells in the original grid, and NL is a lower bound on
the number of average-sized cells that a block B in the coarse grid may consist of.
Hence, B is adjoined with a neighboring block subject to flow of similar magnitude
as that which B is subject to.

3: Refine a block B if
∫

B
g(v) dx >

NU

N

∫

Ω
g(v) dx. (5)

Here the right hand side provides an upper bound on the amount of flow allowed to
pass through a single block. The refinement strategy consists of the following parts:
(a) Pick an arbitrary cell T0 in the fine grid that is contained in B.
(b) Find the cell Ti ⊂ B for which the center of Ti is furthest away from the center

of T0 (Ti will be located along the boundary B).
(c) Define B′ = Ti and progressively enlarge B ′ by successively adding cells sur-

rounding Ti until the upper bound in (5) is reached.
(d) Define B = B\B ′ and refine B further if (5) still holds.

4: Repeat Step 2 and terminate.

Step 4 does not have significant impact on the accuracy of obtained solutions, and may
therefore be skipped, but it tends to reduce the number of blocks by 30%–50%. This is
because the refinement strategy in Step 3 produces cells with volume less than NL|Ω|/N .
Although the final cells may satisfy (5) we do not repeat Step 3.

The numerical results in Section 5 indicate that the algorithm is quite robust with respect
to the choice of NL and NU . Tuning these parameters is quite easy. For instance, as a
rule of thumb, to generate a grid with a scale-up factor of N , choose NU ∼ 5N/4 and
NL ∼ N/4. Moreover, the algorithm is not sensitive to the cells T0 used in the refinement
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Fig. 1. Top-left: Logarithm of permeability (60 × 220 Cartesian grid). Top-right: Logarithm of
|v| obtained for a five-spot. Bottom-left: Logarithm of |v| mapped onto a non-uniform coarse
grid with 208 cells. Bottom-right: Logarithm of |v| mapped onto a Cartesian grid with 220 cells.

Fig. 2. Grid after each step when the non-uniform coarsening algorithm is applied to layer 37 in
the SPE10 model with NL = 15 and NU = 80.

step because it is only used as a starting for locating the cell Ti along ∂B. Hence, in our
implementation, we simply take T0 to be the first cell in the list of cells that belong to B.

To illustrate how the algorithm works we consider a two-dimensional test case representing
one of the layers (layer 37) in Model 2 used in the 10th SPE Comparative Solution Project
[9], a project used to test and validate upscaling methods. The logarithm of the horizontal
permeability is shown in the upper left hand plot of Figure 1. Here we see the trace of
high-permeability channels on a low permeable background. Figure 1 also shows plots of
the logarithm of the velocity depicted in the upper right plot mapped onto a non-uniform
coarse grid with 208 cells and a uniform Cartesian grid with 220 cells.

Figure 2 shows the grids obtained in each step of the non-uniform coarsening algorithm
with NL = 15 and NU = 80, giving an upscaling factor of about 65. In each plot each
block is assigned a random color. After the initial step we see a myriad of small cells due to
oscillations in the velocity, which, in turn, are caused by oscillations in the permeability.
These bits and pieces are generally too small to have significant impact on the flow regime.
Hence, they are merged with a neighboring block to obtain the next grid depicted in the
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upper-right plot. Here we see that some of the blocks stretch across large portions of
the domain, hence clearly being too large to model an advancing saturation front. Upon
completion of the refinement step we obtain the grid depicted in the lower-left plot. In this
grid we may spot some very small blocks consisting of only a few cells. After the blocks
consisting of less than 15 cells are merged with a neighboring block, we obtain the final
grid depicted in the lower-right plot. Note that the algorithm delivers an unstructured
grid even if the fine grid is structured, and that the blocks have very irregular shapes.

The fact that we use flow information to generate the coarse grid may give the impression
that the grid is case-specific, and therefore needs to be recomputed when flow conditions
change, e.g., when well-rates, boundary conditions, or well-configurations change. But
because high flow regions represent high-permeability zones with good large scale connec-
tivity, it is generally not necessary to generate a new coarse grid, even if flow conditions
change significantly. This will be demonstrated in Section 5.4. Note also that since the
coarsened grid is employed only to compute the flow transport, one does not need to solve
an additional single-phase flow problem. The grid is generated after the first pressure step
in the sequential time-stepping loop, i.e., before the first saturation step.

An alternative coarsening strategy that does not require flow information is to base the
initial coloring on the logarithm of permeability. This option has been tested, and found
to be less viable. The reason for this is that low permeability cells that occur in high
permeability regions may be subject to large amount of flow, and should therefore not be
separated from the high permeability region. Similarly, high permeability patches may be
isolated inside low permeable regions so that they are not subject to significant flow.

It should also be mentioned that a potential drawback with flow based coarsening strate-
gies is that the grid will in general have to be regenerated for every permeability realiza-
tion. However, the current algorithm is very fast – the time it takes to generate a new
coarse grid is negligible relative to the time it takes to perform a single simulation. We
therefore believe that this type of upscaling strategy should be a valuable tool, also for
an analyst trying to complete an uncertainty study.

3.1 Discussion

The grid-coarsening approach described above is proposed as a remedy for situations where
conventional upscaling is inaccurate or it is prohibitively computationally expensive to
perform the entire simulations directly on the geomodel grid. The main objective is to
exploit information in high resolution geological models in an optimal way. Here we discuss
the applicability and limitations of the proposed approach as well as possible implications
and relations to other methods. Since a key to our approach is the ability to compute
mass conservative velocity fields with high resolution, e.g., directly on the geomodel, we
discuss first the validity of this assumption.

As an intermediate solution between upscaling and direct simulation on geomodels, the
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possibility of using multiscale methods [1,5,14] to provide high resolution velocity fields
has been proposed. These methods may be used to generate accurate mass conservative
velocity fields on high-resolution geomodel grids at the cost of a conventional flow-based
upscaling method. They may therefore be regarded as a more robust and flexible alterna-
tive to upscaling for the pressure equation (see e.g., [3,16] for a discussion). In particular it
has been shown that the multiscale mixed finite element method [7,1] is very flexible with
respect to handling very complex grids [3]. This method is currently being extended to the
three-phase black-oil model, which is the industry standard for reservoir simulation. Thus,
with ongoing efforts, we believe that multiscale methods will, in time, provide a viable
tool for computing mass conservative velocity fields directly on real-field geomodels.

Multiscale methods for subsurface flow simulation have for the most part been used to
solve the pressure equation and combined with a traditional method for solving the satura-
tion equation(s) on the underlying fine grid. Unfortunately, even with streamline methods,
computing the phase transport on the geomodel may create a bottle-neck in the simula-
tions that prevents high speed-up factors relative to sequential time-stepping approaches
where the pressure equation is solved with a standard numerical method directly on the
geomodel. Thus, whether we solve the pressure equation on the fine grid, or employ a
multiscale method to incorporate subgrid effects into a set of coarse scale equations, there
is a need to address how the phase transport can be computed in an optimal way with
respect to solution accuracy and computational efficiency.

Here we have proposed creating an upscaled model only for the saturation equation, i.e.,
to generate a coarse grid that resolves more accurately underlying flow patterns than tra-
ditional coarse grids used in reservoir simulation, see Figure 1, Figure 4 and the analysis in
Section 3.2 below. Although many authors have proposed coarsening strategies for subsur-
face flow applications, see e.g., [13,15,19] and the references therein, the current approach
is primarily motivated by [10]. In particular, it was observed in [10] that introducing a
grid which is more finely gridded in high-flow regions allows capturing more accurately
flow quantities of interest, such as production characteristics, without resorting to multi-
phase upscaling. The main significance of our approach is that it is all-applicable. Hence,
whereas the non-uniform coarsening strategy in [10] applies primarily to Cartesian-like
geomodels with high flow channels that are aligned with the grid, our approach applies
to all types of grids and essentially all types of heterogeneous structures.

In the current paper we have chosen to consider a simplified model that does not include
effects from gravity and capillary forces. In general, flow-based grid coarsening approaches
based on separating high and low flow regions, or on tuning the grid to resolve high
flow regions, are designed for modeling flows where heterogeneity, rather than gravity
or capillary forces, dominates the flow patterns. This does not mean that the current
approach is not applicable to problems with non-zero gravity or capillary forces. Indeed,
most flow scenarios on the scale of an oil reservoir are affected by both gravity and capillary
forces, but the flow is usually primarily driven by pressure (viscous forces), meaning that
flow patterns are generally dominated by heterogeneity. The current algorithm is therefore
expected to work well for this type of flow scenario.
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If flow patterns are dominated by gravity, then we do not expect that solutions obtained
using flow-based grids will be much more accurate than solutions obtained using standard
coarse grids. Flow-based gridding implicitly assumes that the high flow regions remain the
same throughout a simulation. For gravity dominated flows the flow patterns may change
significantly during simulation so that regions initially subject to significant flow may be
subject to little flow at later times, and vice-versa. Thus, tuning the grid to high flow
regions at initial time may be of little value. On the other hand, the coarsening strategy
proposed in this paper should not be regarded only as a tool to achieve higher accuracy, it
may also be used as a generic tool to coarsen complex unstructured geomodels. Moreover,
although the algorithm has not been applied to gravity dominated flows, we believe that
it will not, on average, produce less accurate results than uniform coarsening strategies.

Upscaling of capillary dominated flows is a problem of a different nature. Indeed, capillary
dominated flows are more strongly coupled, and the sequential splitting where one solves
the pressure equation and saturation equation sequentially is no longer justified. However,
the proposed coarsening algorithm is intended for field scale (10 m–10 km) simulations,
whereas flows that are dominated by capillary forces occur on a much finer scale (dm–m).

Finally we would like to remark that combining the proposed coarsening approach with
a multiscale method for the pressure equation brings us closer to having an Earth Model
shared between reservoir engineers and reservoir geologists [15]. This means that the
geological model provided by geologists is used as input for the reservoir simulator. At
present geoscientists and reservoir engineers are forced to work with different descriptions
of the subsurface. To bridge the gap it is necessary that the reservoir engineer can select
semi-automatically numerical technology and grid resolution for the simulations at run-
time to fit available computer resources and project requirements. Having a “Shared Earth
Model” will, apart from giving the reservoir engineer a better description of the subsurface,
offer the geoscientist the ability to validate the geomodel before it is sent to the reservoir
engineer. This can simplify and accelerate reservoir simulation workflows considerably, and
thereby allow e.g., oil-companies to save many man-hours. Indeed, subsurface geological
models are not static, they are analyzed, iterated and rebuilt as project requirements and
business decisions change, or when uncertainty studies indicate that the model does not
give a representative picture of the reservoir flow regime.

3.2 Analysis

Recall that Algorithm 1 groups high and low flow regions separately. The velocity field
inside a single grid block will therefore be of nearly the same magnitude, i.e., the velocity
will have small variations in each coarse block. We will now show that this implies also
that the saturation variation is small within each coarse block in the non-uniform coarse
grid, i.e., that the saturation is well resolved on the coarse grid.
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Consider the equation for the time-of-flight function

v · ∇τ = φ.

The time-of-flight functions describe travel times along flow trajectories (streamlines). The
streamlines ψ = x(τ) are trajectories along which v is a tangential vector (see e.g., [2] for
details). Each streamline eminates from an injection well and terminate at a production
well. Along streamlines, the corresponding time-of-flight functions are defined by

dτ

ds
=

φ

|v|
,

where s is arclength distance. Moreover, between wells we have

∂S

∂t
+
∂f(S)

∂τ
= 0. (6)

Observe now that since we employ a velocity computed on the fine grid for the coarse grid
simulations, we do not really alter the streamlines when coarsening the grid. Rather we
introduce a coarse grid approximation to the time-of-flight functions. Thus, conceptually
we may think of our approach as solving (4) by solving (6) along one-dimensional stream-
lines where the time-of-flight function τ is replaced with a coarse grid approximation τ0.
Hence, one should obtain an accurate coarse grid saturation solution S0 away from shocks
if the projection τ0 of τ onto the coarse grid is close to τ . Moreover, if the time-of-flight
functions are close to each other, then the shock locations also remain close to each other.
Thus, although the L∞ norm of S − S0 can be of order O(1) in vicinity of shock regions,
the Lp norm of S − S0 is small because of the small volume of this region.

To prove that τ0 approximates τ , we define δ(x) = τ(x) − τ0(x), i.e., δ(x) is the time lag
of reaching the point x with coarse-scale velocity. We will show that the path traversed
during this time lag is small due to small variations of the velocity field within the coarse
block. Thus, if the velocity does not degenerate, the time lag δ(x) will remain small.

Denote v0 to be the coarse-scale velocity that determines τ0. Or more precise, v0 is the
projection of v onto the coarse grid and τ0 is the corresponding time-of-flight function.
Next, introduce two streamlines ψ and ψ0 that emanate from the same point, but with
velocity v and v0, respectively. The corresponding time-of-flight functions satisfy

x(τ) = x, x0(τ0) = x, (7)

where x(t) and x0(t) are functions that trace the streamline trajectories, defined by
dx/dt = v and dx0/dt = v0, respectively. It now follows from (7) that

∫ τ

0
v(x(t))dt =

∫ τ0

0
v0(x0(t))dt,

and hence that ∫ τ0

τ
v0(x0(t))dt =

∫ τ

0
(v(x(t)) − v0(x0(t)))dt. (8)
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To see that the right hand side of (8) is small, note that

|
∫ τ

0
(v(x(t)) − v0(x0(t)))dt| ≤

∫ τ

0
|v(x(t)) − v(x0(t))|dt+

∫ τ

0
|v(x0(t)) − v0(x0(t))|dt. (9)

If |v−v0| is uniformly small, then the last integral on the right hand side is small. Moreover,
one can also easily show that if |v − v0| is uniformly small, then flow trajectories that
emanate from the same point remain close to each other. Consequently, we have that
when |v − v0| is uniformly small, then also the first term on the right hand side (9) is
small, and hence the whole right hand side of (9) is small. On the other hand, the left
hand side of (8) is equal to x0(τ0)− x0(τ), or the distance traversed from time τ0 to time
τ with the velocity v0. Thus, (8) implies that this distance is small. Consequently, if v0 is
non-degenerate, then the time lag δ(x) = τ(x) − τ0(x) will also remain small.

4 Numerical discretization

4.1 The pressure equation

To discretize (3) we first need to prescribe boundary conditions. In this paper we impose
no-flow boundary conditions (v · n = 0 on ∂Ω) for simplicity. Now denote the fine grid
(the geomodel) by T = {T}, and define the following function spaces:

Hdiv(T ) =
{

v ∈ L2(T )d : ∇ · v ∈ L2(T )
}

,

Hdiv
0 (T ) =

{

v ∈ Hdiv(∪T∈T T ) : v · n = 0 on ∂Ω
}

.

Next we introduce the following bilinear forms:

b(·, ·) : Hdiv
0 (T ) ×Hdiv

0 (T ) → IR b(u, v) =
∑

T∈T

∫

T
u ·K−1v dx

c(·, ·) : Hdiv
0 (T ) × L2(Ω) → IR c(v, p) =

∑

T∈T

∫

T
p∇ · v dx

d(·, ·) : Hdiv
0 (T ) × L2(∂T ) → IR d(v, π) =

∑

T∈T

∫

∂T
π v · nT ds.

Here nT is the unit normal on ∂T pointing outward.

In a so-called hybrid formulation [6] of (3) with prescribed no-flow boundary conditions
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one finds a unique triplet of functions (v, p, π) ∈ Hdiv
0 (T )×L2(Ω)×L2(∂T \∂Ω) such that

b(u, v) − c(u, p) + d(u, π) = 0, ∀u ∈ Hdiv
0 (T ),

c(v, q) = (f, q), ∀q ∈ L2(Ω),

d(v, µ) = 0, ∀µ ∈ L2(∂T \∂Ω).

(10)

Here p represents pressure, v represents velocity, and π is a Lagrange multiplier used to
enforce mass conservation. Moreover, ∂T = ∪T∈T ∂T and (·, ·) is the L2 inner product.

4.1.1 Mimetic finite-difference method (FDM)

Mimetic FDMs [12,11] may be regarded as finite-difference or finite-volume versions of
mixed finite element methods (FEMs). Since mimetic FDMs are quite new, we describe
first the hybrid formulation of corresponding mixed FEMs. In the hybrid formulation one
selects finite-dimensional subspaces V ⊂ Hdiv

0 (T ), U ⊂ L2(Ω), and Π ⊂ L2(∂T \∂Ω), and
seeks (v, p, π) ∈ V × U × Π such that (10) holds for all (u, q, µ) ∈ V × U × Π. Here each
approximation space is spanned by a particular set of basis functions. For instance, V is
spanned by a set of basis functions {ψm

i ∈ Hdiv(Tm) : Tm ∈ T , i = 1, 2, . . . , Nm}, where
ψm

i is supported in Tm only. Thus, since b(ψm
i , ψ

n
j ) is nonzero only if n = m, we have

b(
∑

i,m

um
i ψ

m
i ,

∑

i,m

vm
i ψ

m
i ) =

∑

m,i,j

um
i v

m
j b(ψ

m
i , ψ

m
j ) =

∑

m

uT
mBmvm, um,vm ∈ RNm , (11)

where um = [um
i ], vm = [vm

i ], and Bm is a local matrix associated with Tm. It is important
to observe that by enumerating the velocity unknowns (basis-functions) in a cell-wise
manner, the mass-matrix that stems from b(u, v) in (10) has a block-diagonal structure,
where the local matrices Bm are the block-diagonals. This allows the hybrid system to be
reduced to a symmetric and positive definite linear system, which is in general easier to
solve than the original system which is indefinite.

The mimetic FDM formulation is equivalent, except that the subspace V in Hdiv
0 (T ) is

replaced by a discrete subspace M ⊂ L2(∂T ), and the associated bilinear form b(·, ·) is
replaced by a bilinear form m(·, ·) that acts on L2(∂T ) × L2(∂T ). The basic idea is to
introduce means for evaluating b(·, ·) in an approximate sense without having explicit
representations of the velocity in each cell. In particular, instead of seeking a velocity field
defined over each element T , one seeks a set of fluxes defined over the cell faces ∂T .

The bilinear form m(·, ·) employed here is defined so that the resulting method reduces
to a first order Raviart-Thomas mixed FEM (RT0) [18] when the grid is Cartesian and
the permeability is scalar and cell-wise constant. In particular, we associate here (as in
RT0) a basis function ψm

i with each face Fm
i of every grid cell Tm. The velocity unknown

vm
i corresponding to Fm

i will represent net velocity across Fm
i in the direction of the unit
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normal nm
i to Fm

i pointing out of Tm. If we now expand u and v in the basis {ψm
i }:

u =
∑

i,m

um
i ψ

m
i and v =

∑

i,m

vm
i ψ

m
i

and assume that m(ψm
i , ψ

n
j ) is nonzero only if n = m, then

m(u, v) =
∑

m,i,j

um
i v

m
j m(ψm

i , ψ
m
j ) =

∑

m

uT
mMmvm, um,vm ∈ RNm , (12)

for a given matrix Mm associated with Tm. Hence, contrary to (11) where Bm was defined
by the bilinear form b(·, ·), the bilinear form m(·, ·) is defined by the local matrices Mm.

In the implementation we employ only the inverse of Mm. We therefore provide only a
formula for computing the inverse Wm of Mm [12]. To this end, we define the following
auxiliary matrices:

Nm — matrix whose i’th row is defined by

nm,i =
1

|Fm
i |

∫

F m
i

(nm
i )T ds,

Cm — matrix whose i’th row is defined by (xm is the center of Tm)

cm,i =
1

|Fm
i |

∫

F m
i

(x− xm)T ds,

Dm — diagonal matrix containing the areas of each face,
Zm — matrix whose columns form an orthonormal basis for the column space of DmCm.

Then the inverse matrix Wm is defined by

Wm =
1

|Tm|
NmKNT

m +
2trace(K)

|Tm|
(I − ZmZT

m). (13)

This matrix is symmetric and positive definite, and hence ensures that m(·, ·) defines an
inner-product on M ×M .

We would like to note that the current approach to modeling subsurface flow does not
require using a mimetic FDM to solve the pressure equation. Any method that provides a
mass-conservative velocity field on the geomodel, or at least on some given fine grid, may
be used. The primary reason why we have chosen to employ a mimetic FDM is the natural
ability to handle complex grid geometries, as well as full-tensor permeabilities [4]. Indeed,
geomodels that model real oil or groundwater reservoirs are often significantly more com-
plex than the corresponding upscaled simulation models. Hence, when discretizing the
pressure equation directly on a geomodel it is particularly important that a flexible nu-
merical method is employed. For a discussion of the pros and cons of various discretization
techniques for (3) on geological models, we refer the reader to [3], in which a multiscale
method for corner-point grids, the industry-standard in reservoir simulation, is proposed.
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4.2 The saturation equation

To discretize (4) on grids where each block consists of a connected collection of cells in
the original fine grid we employ an upstream weighted finite volume method with respect
to fluxes obtained on the fine grid. That is, instead of using only the net flux for each
interface in the coarse grid and a standard upstream weighted finite volume method with
respect to the coarse grid fluxes, we utilize the subgrid resolution in the velocity.

Hence, let each grid block Bm consist of a connected collection of cells in the fine grid and
denote non-degenerate interfaces in the fine grid by γij = ∂Ti ∩ ∂Tj . The discrete system
of equations for the saturation equation now reads:

Sn+1
m = Sn+1

m +
4t

∫

Bm
φ dx





∫

Bm

qw(Sn+1) dx−
∑

γij⊂∂Bm

Vij(S
n+1)



 . (14)

Here Sm is the net saturation in Bm and

Vij(S) = max{vijfw(S|Ti
),−vijfw(S|Tj

)}, (15)

where vij is the Darcy flux across γij, i.e., from Ti to Tj. Notice that if there is bi-directional
flow across Γkl = ∂Bk ∩∂Bl, i.e., if

∫

Γkl
max{v ·nkl, 0} ds > 0 and

∫

Γkl
min{v ·nkl, 0} ds < 0

where nkl is the unit normal to Γkl pointing from Bk to Bl, then the phase-flux across
Γkl is approximated using both Sk and Sl. Thus, although (14) is based on a one-sided
upstream scheme, we may obtain a two-sided upstream scheme on the coarse grid.

5 Numerical results

In this section we seek to demonstrate that by using Algorithm 1 for grid coarsening one
consistently obtains more accurate saturation solutions than if uniform coarsening is em-
ployed. To this end, solutions obtained using non-uniform coarse grids are compared with
corresponding solutions obtained using uniform coarse grids, as well as with a reference
solution computed using the original grid to perform the transport simulations.

We first apply the non-uniform coarse gridding strategy to a sequence of Cartesian grid
models with permeability data from Model 2 of the Tenth SPE Comparative Solution
Project [9], henceforth called the SPE10 model. Next we consider a corner-point model
with 30 layers. On this model we generate 20 different permeability fields by populating
each layer with values drawn from a spatially correlated log-normal distribution. In terms
of grid, this model is more complex to coarsen with traditional coarsening strategies be-
cause many layers are partially eroded away, giving rise to degenerate cells, and pinch-outs
causing so-called non-neighboring connections. However, the grid is given on a logically
Cartesian format, and may therefore be partitioned uniformly in index space. We apply
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this strategy as an alternative to the method proposed in this paper. Finally, we employ
a model consisting of four layers from the SPE10 model to assess robustness with respect
to degree of coarsening, different well-configurations, and varying flow conditions.

5.1 Experimental setup

The numerical experiments below model incompressible and immiscible two-phase flow
without gravity and capillary pressure effects. For the time-stepping, we apply a non-
iterated sequential splitting. This means that the pressure equation is solved at the current
time-step with total mobility computed using saturations from the previous time-step.
Next, the saturations are convected forward in time using the current velocities, and the
new saturation values are used to compute the pressure at the next time-step, and so on.
The total simulation time for all simulations below is one PVI (pore volume injected).
This means that at the end of a simulation the total volume of water that has been
injected is equal to the total accessible pore volume in the model.

The dynamic nature of an incompressible two-phase flow system is often quantified by the
ratio of the end-point values of the total mobility. Here we define the phase mobilities by

λw =
S2

µw

, λo =
(1 − S)2

µo

, 0 ≤ S ≤ 1. (16)

Without gravity, the simulation results depend on the viscosities only as a function of the
ratio µw/µo, henceforth referred to as the viscosity ratio. Thus, for simplicity we assume
that µw = 1. If we now choose µo > 1 then we will get so-called unstable displacement
flows for which small scale “fingers” develop and move rapidly at the saturation front.
In contrast, choosing µo < 1 gives stable displacement flows for which one typically gets
sharp saturation fronts because the total mobility is larger behind the front than ahead
of the front. In this paper we use µo = 0.2, µo = 1 and µo = 10. These values give rise to
both stable and unstable displacement flows so that the simulation results should give an
indication of the versatility of doing simulations using the proposed coarsening strategy.

For two-phase flow with dynamic total mobility, different saturation solutions will give
different velocity fields. However, since we here want to assess how much we can improve
saturation solutions by using a non-uniformly coarsened grid, as opposed to uniform
coarsening, we want to eliminate differences caused by having different velocity fields. We
therefore use the same (fine grid) velocity field to perform simulations on both grids. That
is, for each time step, the velocity solution used to perform the coarse grid simulations
is obtained by solving the pressure equation on the fine grid using a reference saturation
solution to update the total mobility. The reference solution Sref is obtained by solving
the saturation equation on the fine grid.

We assess the accuracy of a saturation solution S using a measure for the overall accuracy,
and also a measure for assessing the accuracy of the predicted oil-production at the
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producers. To measure the overall accuracy, we compute how much the solution deviates
from the reference solution in the L1-norm, divide by the L1-norm of the reference solution,
and integrate in time, i.e.,

e(S) =
∫ 1

0
e(S, t) dt where e(S, t) =

‖S(·, t) − Sref(·, t)‖L1(Ω)

‖Sref(·, t)‖L1(Ω)

,

with time measured in PVI.

Similarly, to quantify the accuracy of the predicted oil-production, we measure the accu-
racy of the predicted water-cut curve w, showing the fraction of water in the produced
fluid. To this end, we compute how much the water-cut curve deviates from the reference
water-cut wref curve in the L2-norm and divide by the L2-norm of wref , i.e.,

e(w) =
‖w − wref‖L2([0,1])

‖wref‖L2([0,1])

,

again with time measured in PVI.

Finally, because well-models are used only to model well-rates and do not appear explicitly
in the saturation equation, we will throughout this section assume that the well rates are
fixed. Hence, we assume that the source term q in (3) is given explicitly. Moreover, the
source term in (4) will be defined by qw(S) = max(q, 0) + fw(S) min(q, 0). In the figures
and tables presented in this section we will frequently use UC as an abbreviation for
results obtained with uniformly coarsened grids and NUC as an abbreviation for results
obtained with non-uniformly coarsened grids.

5.2 Cartesian grids

In this section we consider a series of two- and three-dimensional Cartesian grid models.
Each model represents either a single layer in the SPE10 model [9], or a stack of five
consecutive layers. The SPE10 model itself consists of a total of 85 layers, where the top 35
layers model a Tarbert formation representing a prograding near-shore environment, and
the bottom 50 layers model a fluvial Upper Ness formation with a spaghetti of narrow high-
flow channels. The entire model consists of 60×220×85 cells, each of size 20 ft×10 ft×2 ft.

In order to be able to interpret the results in this section, we need to explain some basic
characteristics of the heterogeneous structures in the SPE10 model. Both the Tarbert
formation and the Upper Ness formation are highly heterogeneous (in each formation
the permeability is anisotropic and spans more than 10 orders of magnitude), but the
heterogeneous permeability structures are qualitatively different.

• In the Tarbert formation the permeability in each layer is generated stochastically using
a spatially correlated log-normal distribution. However, because the mean permeabil-
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Fig. 3. Saturation and water-cut errors for flow simulations on each of the 85 layers in the SPE10
model. The uniformly coarsened grid is a uniform 15×44 Cartesian grid. The non-uniform grids
contain 619–734 cells (NL = 6, NU = 20).

ity in the layers varies significantly, one obtains segregated flow scenarios with sharp
saturation contrasts from one layer to the next.

• The Upper Ness formation consists of multiple intertwined high permeable flow-channels
through a low permeable background. Hence, in this model the flow channels will carry
the majority of the flow, and therefore cause sharp saturation contrasts between the
background structure and the channels.

Fluvial formations, such as the Upper Ness model, are generally very hard to upscale.
Indeed, whereas one may obtain good results for the Tarbert formation by using grid
blocks that do not cut across the layers (i.e., are one layer thick), upscaling the Upper
Ness formation adequately requires that the channels are resolved by the coarse grid.
This is very difficult, if not impossible, to accomplish with conventional grid-constrained
upscaling strategies.

For the flow simulations that we perform here we employ µw = 1 and µo = 10, i.e., we
consider an unstable displacement process with the same viscosity ratio as in [9]. We
also use the same well-configuration as in [9], i.e., a five-spot with a vertical injection
well in the middle and vertical production wells at each of the four corners. The total
production rate is the same for all producers, and q is assumed to be constant along
each well trajectory. Finally the simulations are performed with 20 pressure steps and 10
saturation steps between each pressure step.
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Table 1
Mean of the errors plotted in Figure 3.

Geomodel Tarbert formation Upper Ness formation

Coarsening strategy NUC UC NUC UC

Mean saturation error 0.1737 0.1357 0.1730 0.3031

Mean water-cut error 0.0246 0.0258 0.0263 0.0875

(a) Geomodel (13200 cells) and velocity on geomodel grid

(b) Coarse grid: 660 blocks Coarse grid: 649 blocks

(c) Coarse grid: 264 blocks Coarse grid: 257 blocks

Fig. 4. Logarithm of velocity for a five spot approximated on a sequence of different grids. Notice
that the channelized flow pattern is lost in the Cartesian coarse grids, whereas the channels are
well resolved on the non-uniform coarse grids, even with only 257 blocks.

5.2.1 Two-dimensional simulations

Figure 3 shows the saturation and water-cut errors for flow simulations on each of the 85
layers in the SPE10 model. Table 1 displays the average saturation and water-cut errors.
We see that the quality of the solutions obtained with the non-uniformly coarsened grids
is nearly independent of the heterogeneous structures in the model. In contrast, when
using uniform coarse grids both the saturation error and water-cut error are much larger
for the fluvial Upper Ness formation than for the Tarbert formation.

The varying performance of uniform coarse grids can be explained by the nature of the
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(a) UC: 15 × 44 × 5 / NUC: 2900–3141 cells
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(b) UC: 15 × 44 × 1 / NUC: 655-714 cells

Fig. 5. Saturation and water-cut errors for flow simulations on 17 models consisting of a stack
of five consecutive layers from the SPE10 model.

Table 2
Mean of the errors plotted in Figure 5.

Uniform grid 15 × 44 × 5 Cartesian grid 15 × 44 × 1 Cartesian grid

Non-uniform grid NL = 6 and NU = 20 NL = 25 and NU = 100

Tarbert formation

Mean saturation error NUC: 0.1796 UC: 0.1608 NUC: 0.2575 UC: 0.3367

Mean water-cut error NUC: 0.0152 UC: 0.0123 NUC: 0.0393 UC: 0.1588

Upper Ness formation

Mean saturation error NUC: 0.1493 UC: 0.3397 NUC: 0.2162 UC: 0.5315

Mean water-cut error NUC: 0.0213 UC: 0.0913 NUC: 0.0263 UC: 0.1899

flow. Because the heterogeneity in the layers from the Tarbert formation are relatively
smooth, one obtains saturation fields that are well resolved on the uniform coarse grids.
In contrast, the heterogeneity in the layers from the Upper Ness formation creates flow
scenarios where a majority of the flow occur in narrow flow channels. This gives sharp
saturation differences between the channels and the low permeable background. Because
the uniform coarse grids do not resolve the channels properly (see e.g., Figure 4), one
will generally smooth the saturation profile, and therefore obtain inaccurate results. For
the non-uniform coarse grids, on the other hand, significant smoothing of the saturation
profile is avoided because the cells are grouped according to magnitude of flow. However,
we note that for the layers from the Tarbert formation the errors for the non-uniform
grids are slightly larger. This is not really surprising since both methods perform well and
the shape of the grid blocks in the non-uniform grids are more irregular in size and shape.
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5.2.2 Three-dimensional simulations

Figure 5 shows the saturation and water-cut errors for flow simulations on 17 models con-
sisting of a stack of five consecutive layers from the SPE10 model. Two sets of simulations
are done. In the first the non-uniform grid is generated by the parameters NL = 6 and
NU = 20 and the uniform grid is a Cartesian grid of 15 × 44 × 5 cells, thus resolving
the layers also in the vertical direction. The second set consists of a non-uniform grid
generated by the parameters NL = 25 and NU = 100 and the uniform grid is a Cartesian
grid of 15 × 44 × 1 cells, i.e., the layers are not resolved in the vertical direction.

We notice first that with the non-uniform coarse grids we consistently obtain accurate
results. In particular we see that, even though the number of cells coarse grids used to
obtain the results in Figure 5 (b) is decreased by a factor four–five relative to the results
in Figure 5 (a), we see only a slight decrease in accuracy.

With uniform coarsening we obtain accurate results only when using the 15 × 44 × 5
Cartesian grid on stacks from the Tarbert formation. The reason why accurate results are
obtained for these cases is that each grid block in the uniform Cartesian grid is only one
layer thick so that we do not have sharp permeability contrasts within each grid block.
Consequently we expect large saturation differences inside individual grid blocks only near
the saturation front. For the stacks from the Upper Ness formation, on the other hand,
one expects large saturation differences within individual grid blocks in large regions.
When using the 15 × 44 × 1 Cartesian grid one obtains poor results for all stacks. This
is due to the fact that in the Tarbert formation there are large permeability differences
between the respective layers, giving rise to segregated flow scenarios. By approximating
the saturation in all five layers with a constant value, as is done in the uniform coarse
grid simulations, one obtains large errors. In particular we see that this has great impact
on the water-cut errors. Indeed, the errors obtained with the 15 × 44 × 1 Cartesian grid
are significantly larger than the errors obtained with the 15 × 44 × 5 Cartesian grid.

5.3 Corner-point grid

The corner-point grid (or pillar grid) format [17] is a very flexible grid format that is used
in many commercial geomodeling softwares. Essentially a corner-point grid consists of a
set of hexahedral cells that are aligned in a logical Cartesian fashion where one horizontal
layer in the logical grid is assigned to each sedimentary bed to be modeled. In its simplest
form, a corner-point grid is specified in terms of a set of vertical or inclined pillars defined
over an areal Cartesian 2D mesh in the lateral direction. Each cell in the volumetric
corner-point grid is restricted by four pillars and is defined by specifying the eight corner
points of the cell, two on each pillar.

Figure 6 shows the corner-point grid that we employ in this section populated with two
different permeability fields. This grid is given on a 30-by-30-by-30 logical Cartesian for-
mat. However, several layers are partially eroded away so that many cells disappear and
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introduce connections between cells that are not neighbors in the logical grid. Whereas
the logical grid has 27000 cells, the physical grid contains only 15206 cells.

We consider here a quarter-of-a-five-spot case, i.e., we inject at constant rate along a
vertical column located at one of the corners and produce at constant rate along a vertical
well at the opposite corner. The corner-point grid has been populated with 20 different
permeability fields. Each field is a layered scalar permeability field where the permeability
in each layer is spatially correlated and drawn from a log-normal distribution. For each
realization the permeability distribution of layer z in the logical grid is generated using
the following Matlab code:

k = exp(10*rand(1)+smooth3(randn(30,30,3),’gaussian’,[3,3,3],0.55));

K(:,:,z) = k(:,:,2);

In the simulations we have taken 40 pressure steps and 10 saturation steps between each
pressure step. The non-uniform coarse grids are generated using NL = 6 and NU =
20. These parameters resulted in 20 coarse grids with 647–704 cells. For the uniform
coarsening approach we subdivide the 30-by-30-by-30 logical Cartesian grid uniformly
into a 10-by-10-by-10 grid. However, because some cells disappear, the resulting coarse
grid consists of a total of 838 cells. Hence, the non-uniformly coarsened grids contain
20–30 percent less cells than the uniformly coarsened grid that we use for comparison.

Figure 7 shows saturation errors e(S) and the water-cut errors e(w) for all permeability
fields and three viscosity ratios. Table 3 shows the mean error over the 20 realizations.
The results clearly demonstrate that the solutions obtained with non-uniform coarse grids
are, on average, significantly more accurate than the solutions obtained for the uniformly
coarsened grid. For instance, the saturation errors obtained on the non-uniform coarse
grids are in all cases, except for realization 19 with µo = 10µw, about 0.25, whereas the
saturation errors obtained using the uniformly coarsened grid is often much larger.

The water-cut errors increase for both methods when µo decreases relative to µw. This
is primarily due to the fact that high viscosity ratios have a sharpening effect on the
saturation front. In particular, for µo = 0.2µw we obtain shock-type saturation fronts.
Simply due to less spatial resolution, shock-type saturation fronts will be smoothed on
coarsened grids. Hence, because the reference water-cut curve is a function of fine-grid
saturations, and coarse grid water-cut curves are functions of coarse grid saturations, we
obtain larger water-cut errors for high and low viscosity ratio flows. We notice also that
for a couple of realizations for the case µo = 0.2µw the water-cut error obtained with the
non-uniform grid is larger than for the uniform grid. A reason for this may be that the
algorithm sometimes groups many of the cells along the production well in one block, and
therefore do not account for different breakthrough time in the different layers. This could
of coarse be avoided by adding an extra feature in the coarsening algorithm that ensures
that blocks do not contain too many cells with a source.
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Fig. 6. Permeability field realizations 1 (left) and 2 (right). Realization 1 is particularly difficult
to upscale because there are very few high permeability layers. Consequently a lot of flow is
forced into only a few of the layers. Realization 2 gives flow scenarios that are much easier to
upscale. This model has thick high-permeable zones that transmit majority of the flow.
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Fig. 7. Saturation and water-cut errors for 20 different permeability field realizations and vis-
cosity ratio 0.1 (top), 1 (middle), and 5 (bottom).
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Table 3
Mean of the errors plotted in Figure 7.

Viscosity ratio µo = 10µw µo = µw µo = 0.2µw

Coarsening strategy NUC UC NUC UC NUC UC

Mean saturation error 0.2370 0.3919 0.2296 0.3551 0.2224 0.2930

Mean water-cut error 0.0368 0.1439 0.0697 0.2337 0.1823 0.2750

5.4 Robustness

In the current section we seek to demonstrate the robustness of the proposed grid coars-
ening strategy. In particular we make an effort to show that the method provides accurate
results for various degrees of coarsening and for various flow scenarios. To demonstrate the
latter, we first consider flows imposed by different well-configurations. Next we pick one
of the well-configurations and show that one obtains more accurate results with the non-
uniform coarsening approach than with uniform coarsening, also when well-rates change
during simulation. Finally we explore a flow scenario where the well-configuration changes
rapidly during simulations. This case corresponds to a situation where new wells are drilled
and old wells are shut down or reopened during simulation.

We would like to emphasize that we never regenerate the non-uniform coarse grid even
though flow conditions change significantly so that the simulation velocity differs a lot
from the velocity that is used to generate the coarse grid (cf. Algorithm 1).

In this section we revisit the SPE10 model. In particular, we consider the four bottom
layers (from the fluvial Upper Ness formation) and use the same definition of the phase
mobilities, i.e., λw and λo are defined by (16) with µo = 10µw = 0.003 cp. In each
simulation we take 20 pressure steps and 200 saturation steps.

5.4.1 Robustness with respect to degree of coarsening

To assess robustness with respect to the degree of coarsening, we have selected five different
Cartesian coarse grids, and chosen the parameters NL and NU correspondingly to create
grids with comparable resolution. Table 4 shows the Cartesian grid dimensions along with
the number of cells in the Cartesian grid and in the non-uniformly coarsened grid.

Here we use the same well-configuration as in [9]; one injector in the middle and a pro-
ducer at each corner (well-configuration A in Figure 9). The corresponding saturation
and water-cut errors are shown in Figure 8. The results show that the non-uniform coarse
grids consistently allow more accurate results than one obtains with the corresponding
uniformly coarsened Cartesian grids. In particular it is worth noticing that for the four
finest grids we obtain water-cut curves that nearly match perfectly the reference curve
(see also the water-cut curves corresponding to well-configuration A in Figure 11).
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Table 4
Number of cells in each of the uniformly coarsened (Cartesian) and non-uniformly coarsened
grids, respectively.

Cartesian grid 30 × 110 × 4 20 × 55 × 4 15 × 44 × 2 10 × 22 × 2 6 × 22 × 1

Number of cells 13200 4400 1320 440 132

NUC: NL/NU 2/6 4/16 10/40 25/150 50/500

Number of cells 7516 3251 1333 419 150
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Fig. 8. Saturation and water-cut errors for five degrees of coarsening. For each case, the grid
dimensions for the uniformly coarsened Cartesian grid is given.

The saturation errors shown in Figure 8 are computed on the fine grid. Hence since the
coarse grid saturation solutions provide estimates for the average saturation in each block,
we should indeed expect that the saturation error increases when the blocks become larger.
However, the fact that we continue to produce accurate water-cut curves demonstrates
that we are able to capture the qualitative behavior of the flow accurately, also on highly
coarsened grids. The main reason for this is that even very coarse non-uniform coarse
grids capture high flow channels quite well, as is illustrated in Figure 4.

5.4.2 Robustness with respect to well-placement

In this section we investigate the robustness with respect to well-locations. To this end
we consider five test-cases with the five well-configurations shown in Figure 9. To create
the coarse grid we use NL = 10 and NU = 40, i.e., the same parameters that were used
to generate the third non-uniform coarse grid above. Figure 10 compares the saturation
and water-cut errors obtained for each well-configuration with the corresponding errors
obtained using a uniform 15×44×2 Cartesian grid. The number of cells in the non-uniform
coarse grids are shown in parenthesis along the lower edge of the plots. These plots show
the same trend as Figure 8; with the non-uniform coarsening approach we consistently get
significantly less saturation and water-cut errors than we obtain using the corresponding
Cartesian coarse grid. This is further illustrated in Figure 11 which shows the respective
water-cut curves for each well-configuration.
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Fig. 9. Five selected well-configurations.
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Fig. 10. Saturation and water-cut errors for each of the five well-configurations.
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Fig. 11. Water-cut curves for each of the five well-configurations.
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Fig. 12. Saturation and water-cut errors for a case where the well-rates change during simulation.
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Fig. 13. Saturation and water-cut errors for a simulation where we rotate between the five
well-configurations depicted in Figure 9.

5.4.3 Robustness with respect to changing flow conditions

Finally we demonstrate that the proposed gridding strategy is applicable also when flow
conditions change significantly, i.e., by generating the non-uniformly coarsened grids at
initial time only. To this end we consider first a case with well-configuration A presented
above where only the well rates change. For each pressure step we select the total well
rates for each producer from a random distribution, ensuring only that they sum up to the
injection rate for compatibility. We employ NL = 10, and NU = 40 and compute the initial
velocity field for the case where all producers have the same total well rate. Figure 12
shows how the saturation error e(S, t) evolves along with the associated water-cuts. For
both the non-uniform grid simulation and the uniform grid simulation we see that the
error is about the same as for the case with fixed well-rates (Figure 11: well-configuration
A). In particular, the water-cut for the non-uniformly coarsened grid still matches very
closely the water cut for the reference solution.

Next we rotate among the well-configurations depicted in Figure 9. That is, for each
pressure step we choose a new well-configuration so that at the end of a simulation we
have employed each well-configuration four times. Qualitatively the results depicted in
Figure 13 are very similar to the results depicted in Figure 12, and thus also to the results
for fixed well-rates and fixed well-configurations seen in Figure 10 and Figure 11.

These examples indicate that it is not necessary to regenerate the non-uniform coarse grid
when flow conditions change, i.e., when flow patterns during simulation are domininated
by heterogeneity, but possibly differ substantially from the pattern used to generate the
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grid. More detailed analysis of the effects of changing flow directions on the coarsening
algorithm (e.g., for gravity dominated flows) is currently under investigation.

6 Summary and concluding remarks

In this paper we have presented a generic non-uniform coarsening strategy for modeling
subsurface flow applications. The main objective has been to exploit information in high
resolution geological models in an optimal way. The proposed grid coarsening algorithm is
applicable to both structured and unstructured grids and gives consistently more accurate
results compared to results obtained with uniformly coarsened grids with roughly the
same number of cells. The key to the enhanced accuracy is that the flow velocity is more
accurately resolved on the non-uniform coarse grid.

The current work is motivated in particular by previous work of Durlofsky, Jones, and
Milliken [10] who proposed a strategy for generating coarse grids that are more finely
gridded in high flow regions than in low flow regions. The main significance of our ap-
proach is that it is generic. Whereas the coarsening strategy in [10] applies primarily to
Cartesian-like geomodels with high flow channels that are aligned with the grid, our ap-
proach applies to arbitrary grids and arbitrary heterogeneous structures. The algorithm is
also conceptually simple and easy to implement. We therefore believe that the proposed
approach should be valuable in an industrial setting, e.g., by allowing users to specify
grid-resolution at run-time to fit available computer resources and project requirements.

The ability to generate grids with user-defined resolution at run-time brings us closer
to having an Earth Model shared between reservoir engineers and reservoir geologists
[15]. This means that the geological model provided by geologists is used as input for
the reservoir simulator. Apart from giving the reservoir engineer a better description of
the subsurface, this will also offer the geoscientist the ability to validate the geomodel
before it is sent to the reservoir engineer. This can simplify and accelerate flow simulation
workflows considerably, and thereby allow e.g., oil-companies to save many man-hours.

Acknowledgment: We would like to thank Alf B. Rustad at STATOIL for providing us
with the corner-point grid model used for the flow simulations in Section 5.3.
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