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Abstract

In this series of two papers we present a front-tracking method for the numerical sim-
ulation of first-contact miscible gas injection processes. The method is developed for con-
structing very accurate (or even exact) solutions to one-dimensional initial-boundary-value
problems in the form of a set of evolving discontinuities. The evolution of the discontinuities
is given by analytical solutions to Riemann problems. In this paper, we present the math-
ematical model of the problem and the complete Riemann solver, that is, the analytical
solution to the one-dimensional problem with piecewise constant initial data separated by
a single discontinuity, for any left and right states. The Riemann solver presented here is
the building block for the front-tracking/streamline method described and applied in the
second paper.

key words: porous media, miscible displacement, first-contact miscible, shocks, Riemann problem,

analytical solution

1 Introduction

Gas injection is one of the most widely used enhanced oil recovery processes [1–3]. The funda-
mental principle is the development of miscibility between the resident oil phase and the injected
gas, in order to enhance the mobility of the hydrocarbon phase and to achieve a high displace-
ment efficiency. In general, miscibility between the oil present in the reservoir and the injected
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gas leads to a complex set of interactions described by thermodynamical equilibrium of the sys-
tem, in which components of the gas dissolve in the oil, and components of the oil transfer to
the vapor [4–6].

In this series of two papers, we restrict our attention to simplified thermodynamical systems
that can be approximated by first-contact miscible phase behavior. The underlying assumption
is that the injection gas (solvent) and the resident oil mix in all proportions to form a single
hydrocarbon phase. This scenario is optimal with respect to local displacement efficiency, and
can be achieved in practice if the gas is injected at a pressure well above the minimum miscibility
pressure [7; 8].

We present a computational framework for the efficient simulation of first-contact miscible
processes in three-dimensional, heterogeneous reservoir models. The key ingredients of our ap-
proach are:

1. An analytical solution of the one-dimensional Riemann problem for a three-component,
two-phase system under the assumption of first-contact miscibility of the hydrocarbon
components, assuming that the effects of viscous fingering are negligible.

2. A front-tracking algorithm that makes use of the analytical Riemann solver as a building
block for obtaining approximate solutions to general one-dimensional problems.

3. A streamline simulator that decouples the three-dimensional transport equations into a set
of one-dimensional problems along streamlines.

In Part 1, we present the mathematical model of the problem and the complete set of analytical
solutions to the Riemann problem. In Part 2, we describe the front-tracking algorithm and
streamline simulation framework, along with representative numerical examples in one-, two-
and three-dimensional problems.

The proposed framework was employed by the authors for the simulation of immiscible three-
phase flow [9; 10], and it is extended here to miscible gas injection problems. The applicability of
the framework presented here is limited, however, by the assumption that the effects of viscous
fingering are not accounted for. New analytical solutions to macroscopic models of viscous
fingering for three-component, two-phase flows [11; 12] may eventually lead to the development
of Riemann solvers that incorporate these effects.

The Riemann problem consists in solving a system of conservation laws in an infinite one-
dimensional domain, with piecewise constant initial data separated by a single discontinuity.
The development of analytical solutions to the Riemann problem of multiphase, multicomponent
flow has received considerable attention over the past two decades (see, e.g. [3] and the references
therein). Riemann solutions have been constructed for two-phase and three-phase systems with
complex phase behavior for particular initial and injection conditions. However, the development
of complete Riemann solvers is a much more challenging task. A Riemann solver is a mathemat-
ical algorithm that provides the solution to the Riemann problem for any initial and injection
states. A Riemann solver for polymer flooding was originally presented by Isaacson [13], and
then extended by Johansen and Winther to account for adsorption in two-component [14] and
multicomponent systems [15; 16]. The principle behind polymer flooding is the addition of a
water-soluble polymer to the injected water to increase its viscosity and, consequently, the effi-
ciency of a waterflood. We are interested in miscible flooding, where the injected solvent readily
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mixes with the oil in place, and reduces the viscosity of the hydrocarbon phase. However, under
a proper change of variables, the mathematical structure of the equations is virtually identical
to that of polymer flooding. Therefore, we rely heavily on the developments of Isaacson [13]
and Johansen and Winther [14] when formulating the complete Riemann solver for first-contact
miscible flooding. We extend the formulation (slightly) by accounting for the presence of con-
nate water and residual oil. We also pay special attention to the efficient implementation of the
analytical solver, because typical applications require the evaluation of hundreds of millions of
Riemann problems [9].

An outline of the paper is as follows. In Section 2 we present the mathematical model
describing the first-contact miscible system, and introduce the conservation variables employed
in characterizing the solution. We comment on the mathematical character of the system of
equations, highlighting the fact that it is not strictly hyperbolic. In Section 3 we describe the
different waves that may be present, and the complete solution to the Riemann problem. In
Section 4 we gather the main conclusions and anticipate the use of the analytical Riemann solver
in the front-tracking/streamline framework described in detail in Part 2.

2 Mathematical model

2.1 Governing equations

We derive briefly the governing equations for one-dimensional, two-phase, three-component flow
in porous media. The three components are referred to as water (w), oil (o) and solvent or gas (g).
In what follows, we shall assume that water is immiscible, and forms an aqueous phase (w). We
shall also assume that the two hydrocarbon components (oil and solvent) are fully miscible, and
form a nonaqueous hydrocarbon phase (h).

The one-dimensional conservation equation for each of the components can be written as:

∂mi

∂t
+

∂Fi

∂x
= 0, i = w, o, g, (1)

where mi is the mass of component i per unit volume of porous medium, and Fi is the mass flux
of that component. The mass densities are expressed in the following form:

mw = ρwφSw, (2)

mo = ρhφShχo, (3)

mg = ρhφShχg, (4)

where ρα (α = w, h) are the densities of each phase, φ is the porosity, Sα are the saturations
(volume fractions of each phase), and χj (j = o, g) are the mass fractions of oil and solvent in
the hydrocarbon phase. Equations (2)–(4) are subject to the following constraints:

Sw + Sh ≡ 1, (5)

χo + χg ≡ 1. (6)
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The mass flux of each component, assuming that the macroscopic effects of viscous fingering are
negligible, is given by:

Fw = ρwφvw, (7)

Fo = χoρhφvh, (8)

Fg = χgρhφvh, (9)

where vα are the average velocities of each phase. A constitutive model for the phase velocities is
given by the multiphase extension of Darcy’s law. Neglecting the effect of gravity and capillary
forces, they take the form:

vw = −
k

φ

krw

µw

∇p, (10)

vh = −
k

φ

krh

µh

∇p, (11)

where k is the absolute permeability of the medium, p is the pressure, and krα and µα are the
relative permeability and dynamic viscosity of the α-phase, respectively. For the purpose of this
paper, we shall assume that relative permeabilities are functions of the phase saturation only.

Using Equations (2)–(9) in Equation (1), and assuming incompressible fluids which do not
experience volume change in mixing (ρα = const) and rigid medium (φ = const), the mass
conservation equations for all three components are written as:

∂Sw

∂t
+

∂vw

∂x
= 0, (12)

∂((1 − Sw)(1 − χg))

∂t
+

∂((1 − χg)vh)

∂x
= 0, (13)

∂((1 − Sw)χg)

∂t
+

∂(χgvh)

∂x
= 0. (14)

Summing Equations (12)–(14), we obtain the pressure equation:

∂vT

∂x
= 0, (15)

where vT := vw + vh is the total velocity. The pressure equation is an elliptic equation, which
dictates that the total velocity is at most a function of time. We introduce the fractional flow
functions:

fw :=
λw

λT

, (16)

fh :=
λh

λT

, (17)

where λα = krα/µα is the relative mobility of the α-phase, and λT := λw+λh is the total mobility.
With these definitions, a set of two independent conservation equations is:

∂Sw

∂t
+ vT

∂fw

∂x
= 0, (18)

∂((1 − Sw)χg)

∂t
+ vT

∂((1 − fw)χg)

∂x
= 0. (19)
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Figure 1. Typical dependence of the hydrocarbon viscosity on the solvent mass fraction.

It proves useful to express the governing equations above in terms of the following conservation
variables:

S ≡ Sw : water saturation, (20)

C ≡ (1 − Sw)χg : solvent concentration. (21)

In what follows, we drop the subscript from the solvent mass fraction, χ ≡ χg. After proper
re-scaling of the time variable to eliminate the total velocity and letting f denote the water
fractional flow function, the final form of the conservation equations is:

∂S

∂t
+

∂f

∂x
= 0, (22)

∂C

∂t
+

∂

∂x

(

1 − f

1 − S
C

)

= 0. (23)

To close the mathematical model, we must provide constitutive relations for the hydrocarbon
viscosity and the relative permeabilities. The viscosity of the hydrocarbon phase depends on
the viscosities of the oil and gas components µo and µg (taken as constants) and the gas mass
fraction χ in the hydrocarbon phase. Since the gas viscosity is lower (usually much lower) than
the oil viscosity, the hydrocarbon viscosity is a decreasing function of the gas mass fraction (see
Figure 1).

We assume that the hydrocarbon relative permeability does not depend on the amount of
solvent. In particular, this means that the residual hydrocarbon saturation is invariant. Thus,
relative permeabilities of the aqueous and hydrocarbon phases are functions of the water satu-
ration only. Typical behavior of these functions is shown in Figure 2, where we account for the
presence of connate water and residual oil. As a result, the fractional flow is a function of both
water saturation and solvent concentration:

f =

krw(S)
µw

krw(S)
µw

+ krh(S)
µh(χ)

= f(S,C). (24)
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Figure 2. Top: relative permeabilities of the water and hydrocarbon phases. Bottom: depen-
dence of the fractional flow function on the solvent mass fraction.

Since the hydrocarbon viscosity decreases with the solvent fraction, the overall mobility of the
hydrocarbon phase is enhanced, resulting in lower values of the water fractional flow. The
dependence of the fractional flow function on the solvent mass fraction is illustrated in Figure 2.

2.2 Mathematical character of the equations

We express the system of conservation laws (22)–(23) in vector form:

∂t

[

S
C

]

+ ∂x

[

f
1−f

1−S
C

]

=

[

0
0

]

. (25)

The solution vector (S,C) is restricted to lie on the unit triangle:

U ≡ {(S,C) : S ≥ 0, C ≥ 0, S + C ≤ 1} . (26)

For smooth solutions, the system (25) can be written as

∂t

[

S
C

]

+ A(S,C)∂x

[

S
C

]

=

[

0
0

]

, (27)
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where A is the Jacobian matrix of the system:

A(S,C) :=

[

∂f

∂S

∂f

∂C
(

1−f

1−S
− ∂f

∂S

)

C
1−S

1−f

1−S
− ∂f

∂C
C

1−S

]

. (28)

The local character of the system is determined by the eigenvalues and eigenvectors of the
Jacobian matrix [17]. The eigenvalues are given by:

νs = νs(S,C) =
∂f

∂S
−

∂f

∂C

C

1 − S
,

νc = νc(S,C) =
1 − f

1 − S
,

(29)

and the corresponding eigenvectors are:

rs =

[

1
− C

1−S

]

,

rc =

[

∂f

∂C
1−f

1−S
− ∂f

∂S

]

.

(30)

The eigenvalues νs and νc are the characteristic speeds of propagation of waves of the S- and C-
family, respectively. The system is hyperbolic if the eigenvalues are real, and strictly hyperbolic
if the eigenvalues are real and distinct. In the latter case, the matrix is diagonalizable and
there exist two real and linearly independent eigenvectors. If the two eigenvalues are complex
conjugates, the system is said to be elliptic.

It is easy to show that the system (25) is hyperbolic, but not everywhere strictly hyperbolic.
Loss of strict hyperbolicity occurs in two regions of the composition triangle. First, in the region
of residual oil, both eigenvalues are identically equal to zero. The Jacobian matrix is the zero
matrix, and every direction is characteristic. Second, there is a curve in phase space at which
the eigenvalues coincide, νs = νc. This curve divides the unit triangle U into two regions:

L ≡ {(S,C) : νs < νc} ,

R ≡ {(S,C) : νs > νc} .
(31)

We denote this curve as the transition curve T because the two families of eigenvalues change
order as T is crossed. Since the fractional flow function is monotonic with respect to the solvent
mass fraction χ, the transition curve intersects each line χ = const at exactly one point.

For the first-contact miscible model considered in this paper, the Jacobian matrix is not
diagonalizable on T , that is, A has only one independent eigenvector:

rs

∣

∣

T
= rc

∣

∣

T
=

[

1
− C

1−S

]

. (32)

The system is said to have a parabolic degeneracy on T . This behavior is qualitatively very
different from that of a model that assumes constant hydrocarbon viscosity. In such model,
because the fractional flow f is a function of S only, the system is a multiple of the identity
along the transition curve, and every direction is characteristic.
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Figure 3. Transition curve T (νs = νc) and the regions L (νs < νc) and R (νs > νc) on the
ternary diagram.

3 The Riemann problem

The Riemann problem consists in finding the weak solution to the system of hyperbolic conser-
vation laws:

∂tu + ∂xF = 0, −∞ < x < ∞, t > 0, (33)

with the following initial conditions:

u(x, 0) =

{

ul if x < 0,

ur if x ≥ 0.
(34)

The state ul = (Sl, Cl) is the ‘left’ or ‘injected’ state, and ur = (Sr, Cr) is the ‘right’ or ‘initial’
state. The system of equations (33) and the initial condition (34) are invariant under uniform
stretching of coordinates (x, t) 7→ (cx, ct). The solution must consist of centered waves emanating
from the origin (x, t) = (0, 0). Therefore, we seek a self-similar solution

u(x, t) = U(ζ), (35)

where the similarity variable is ζ = x/t.

3.1 Wave types

In this section we describe the types of centered waves that arise in the solution of the Riemann
problem of miscible three-component flow.

3.1.1 Integral curves and Hugoniot locus

If the solution U(ζ) is smooth, it must satisfy

A(U)U ′ = ζU ′, (36)
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Figure 4. Integral curves of the S-family (solid line) and C-family (dashed line) on the ternary
diagram. Also shown are the inflection locus of the S-family and the transition curve.

that is, ζ is an eigenvalue and U ′ is the corresponding eigenvector. Therefore, smooth waves
(rarefactions) must lie on an integral curve of the right eigenvectors. States U along an integral
curve are defined by the differential equation

dU

dτ
= ri(U(τ)), i = s, c. (37)

Performing the integration analytically, the two families of integral curves are given by the
equations:

S-family :
C

1 − S
= const,

C-family : νc = const.
(38)

The derivation of the equation for the S-family curves is obvious from the expression of the
corresponding eigenvector rs in Equation (30). The equation for the C-family can be obtained
by noting that ∇νc · rc ≡ 0, that is the vector ∇νc in phase space is everywhere perpendicular
to the eigenvector rc. Therefore, curves of the form νc = const must be integral curves of rc. In
the context of compositional displacements, integral curves of the S-family are known as tie-line
paths, and curves of the C-family are termed nontie-line paths [3]. The integral curves of the
system of interest are shown in Figure 4.

Discontinuous solutions must satisfy an integral version of the mass conservation equations,
known as the Rankine–Hugoniot conditions. The set of states u that can be joined to a reference
state ur by a discontinuity satisfy:

F (u) − F (ur) = σ (u − ur), (39)
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where σ is the speed of propagation of the discontinuity. For the flux vector F of the first-contact
miscible problem, Equation (39) admits two families of solutions, which define the Hugoniot locus
of the S- and C-family. In general, integral curves and Hugoniot loci do not coincide, but they
have second order tangency (same slope and curvature) at any given state, so they are locally
very similar.

The integral curves of the miscible system have the following special features: (1) integral
curves of the S-family are straight lines, which means that they have zero curvature; (2) the
eigenvalue νc is constant along integral curves of the C-family, which means that these curves
correspond to contact discontinuities. The immediate consequence of these properties is that,
for the solvent system, Hugoniot loci and integral curves coincide.

3.1.2 Waves of the S-family (Tie-line waves)

Waves of the S-family are solutions of the classical Buckley–Leverett equation. The wave curves
are straight lines on composition space, corresponding to lines of constant solvent mass fraction

χ = const. (40)

The characteristic velocity νs is not constant along integral curves of the S-family. Let us define

Vs(u) := ∇νs(u) · rs(u). (41)

Since the convexity function Vs changes sign, the S-field is a nongenuinely nonlinear field in
the sense of Lax [18]. The inflection locus is the set of states where Vs = 0, which separates
regions of different convexity (see Figure 4). In our model, the fractional flow function is S-
shaped, so the inflection locus intersects each tie-line at exactly one point, which corresponds
to a maximum of the eigenvalue νs. It can be shown that, under these conditions, a S-wave
can only be of three types: rarefaction, shock, and rarefaction-shock [19]. The admissibility of a
S-wave is based on the e-Lax entropy condition (convex-hull construction) [20; 21]. A robust and
efficient algorithm for the determination of the wave structure in the Buckley–Leverett problem
is presented elsewhere [22].

3.1.3 Waves of the C-family (Nontie-line waves)

The characteristic speed νc is constant along wave curves of the C-family. The C-field is a linearly
degenerate field in the sense of Lax [18], and the waves of this family are contact discontinuities.
The immediate computational benefit of this property is that evaluation of nontie-line paths
does not require numerical integration of an ordinary differential equation: the C-waves are
completely determined by the algebraic relation

νc = const. (42)

Application of the e-Lax entropy condition [21] precludes the possibility that a C-wave joins
constant states on opposite sides of the transition curve [13].
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3.2 Admissible wave sequences

In general, the solution to the Riemann problem consists of a sequence of the centered waves
described in the previous section. Before describing the complete solution, we give the admissible
sequences of waves that may be present.

3.2.1 The case ul
C

−→ um
S

−→ ur

Adapting the analysis of Isaacson [13] to our model problem, it can be shown that the sequence

of waves ul
C

−→ um
S

−→ ur, that is, the combination of a slower C-wave with a faster S-wave, is
admissible only in the following three cases:

(a) If um ∈ T and ur ∈ R.

(b) If um ∈ R and ur ∈ R.

(c) If um ∈ R and ur ∈ L such that νc(ur) ≥ νc(um).

Examples of each of these wave sequences are given in Figure 5. The top row of figures show
admissible sequences of wave curves in composition space. The bottom row of figures show the
fractional flow curve corresponding to the tie-line passing through the intermediate state um. In
all three cases, the characteristic speed of the C-wave (slope of the dashed line) is less than the
characteristic speed of the S-wave (slope of the solid line), indicating admissibility of the wave
sequence. In Case (a), um is not a true intermediate constant state, as the speed of both waves
are equal at that point. Therefore, the sequence CS is in fact a single, coherent wave group.

3.2.2 The case ul
S

−→ um
C

−→ ur

Similarly, it can be shown that the sequence of waves ul
S

−→ um
C

−→ ur, that is, the combination
of a slower S-wave with a faster C-wave, is admissible only in the following three cases:

(a) If um ∈ T and ul ∈ L.

(b) If um ∈ L and ul ∈ L.

(c) If um ∈ L and ul ∈ R such that νc(ul) ≥ νc(um).

In Figure 6 we show examples of each of these wave pairs, illustrating the sequence of wave curves
on the composition diagram and the fractional flow curve of the tie-line passing through um. Once
again, Case (a) corresponds to a single, coherent wave group, in which the C-wave and the S-wave
join with equal speeds, and the state um in not an intermediate constant state.

3.3 Solution of the Riemann problem

The global solution of the Riemann problem is obtained by joining waves that form a compatible
sequence. Motivated by the admissible wave structure of Cases 1 and 2 above, and following
Isaacson [13], we define several regions in the composition diagram that will allow a straightfor-
ward characterization of the wave structure of the solution.



R. Juanes and K.–A. Lie: Multiphase first-contact miscible flows, 1. Analytical Riemann solver 12

0
0

0
0

1

1

1

1

C

S

S

f

um

ur

0
0

0
0

1

1

1

1

C

S

S

f

um

ur

0
0

0
0

1

1

1

1

C
S

S

f

um

ur

(a) um ∈ T , ur ∈ R (b) um ∈ R, ur ∈ R (c) um ∈ R, ur ∈ L

Figure 5. All three types of compatible wave sequences of type ul
C

−→ um
S

−→ ur.

• The case ul ∈ L (Figure 7(a)): One must first identify the tie-line χ = χ(ul) associated
with the left state, and the intersection ut of this tie-line and the transition curve T .
Then, we define the following three nonoverlapping regions that cover the entire ternary
diagram U :

1. Region L1: It contains the set of states u satisfying νs(u) < νc(u) and νc(u) < νc(ut).
Therefore, it is bounded from the right by the transition curve T and the left branch
of the nontie-line passing through the intersection point ut.

2. Region L2: It contains the set of states u satisfying that νs(u) > νc(ut) and χ(u) >
χ(ut). It is bounded from the left by the left branch of the nontie-line passing
through ut and from below by the tie-line passing through ut.

3. Region L3: It contains the set of states u satisfying that νs(u) > νc(u) and χ(u) <
χ(ut). It is bounded from the left by the transition curve T and from above by the
tie-line passing through ut.

• The case ul ∈ R (Figure 7(b)): We first find the nontie-line νc = νc(ul) associated with
the left state, and the intersection ut of this nontie-line and the transition curve T . It is
important to note that this intersection point may be outside the ternary diagram. In that
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Figure 6. All three types of compatible wave sequences of type ul
S

−→ um
C

−→ ur.

case, some of the regions defined below will be empty:

1. Region R1: It contains the set of states u satisfying that νs(u) < νc(u) and νc(u) <
νc(ut). If the intersection point ut is inside the ternary diagram, this region is bounded
from the right by the transition curve T and the left branch of the nontie-line passing
through the intersection point ut. Otherwise, it is bounded from the right entirely by
the left branch of the nontie-line, and it is empty if νc(ul) < 1.

2. Region R2: It contains the set of states u satisfying that νs(u) > νc(ut) and χ(u) >
χ(ut). If the intersection point ut is inside the ternary diagram, this region is bounded
from the left by the left branch of the nontie-line passing through ut and from below by
the tie-line passing through ut. If ut is outside the composition triangle, this region
is only bounded from the left by the left branch of the nontie-line νc = νc(ul). If
νc(ul) < 1, this region covers the entire triangle.

3. Region R3: It contains the set of states u satisfying that νs(u) > νc(u) and χ(u) <
χ(ut). If the intersection point ut is inside the ternary diagram, this region is bounded
from the left by the transition curve T and from above by the tie-line passing through ut;
otherwise it is empty.
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Figure 7. Regions on the ternary diagram defining the global wave structure of the Riemann
solution.

We are now in position to give the global structure of the solution to the Riemann prob-
lem [13].

• The case ul ∈ L (Figure 8): If the left state ul belongs to the region L, that is, if
νs(ul) < νc(ul), the global solution to the Riemann problem is of one of the following types:

1. ur ∈ L1 (Figure 8(a)): ul
S

−→ um
C

−→ ur.

2. ur ∈ L2 (Figure 8(b)): ul
S

−→ ut
C

−→ um
S

−→ ur.

3. ur ∈ L3 (Figure 8(c)): ul
S

−→ um
C

−→ ut
S

−→ ur.

• The case ul ∈ R (Figure 9): If the left state ul belongs to the region R, that is, if
νs(ul) > νc(ul), the global solution to the Riemann problem is of one of the following types:

1. ur ∈ R1 (Figure 9(a)): ul
S

−→ um
C

−→ ur.

2. ur ∈ R2 (Figure 9(b)): ul
C

−→ um
S

−→ ur.

3. ur ∈ R3 (Figure 9(c)): ul
S

−→ um
C

−→ ut
S

−→ ur.

The solution to the Riemann problem presented above always exists (by construction) and
is the unique solution satisfying the e-Lax entropy criteria [13; 18; 21]. It is important to note
that all six solution types are of the form

ul
W1−→ um

W2−→ ur, (43)

that is, two wave groups separated by an intermediate constant state. The slow wave W1 can
be of type S, C or S-C. The fast wave W2 can be of type S, C or C-S. Of course, the solution

may involve a single wave if the left and right states are on the same tie-line (ul
S

−→ ur) or on

the same nontie-line path (ul
C

−→ ur).
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Figure 8. Wave structure of the solution when ul ∈ L.

0
0

1

1

C

S

ul

ur

0
0

1

1

C

S

ul

ur

0
0

1

1

C

S

ul

ur
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Figure 9. Wave structure of the solution when ul ∈ R.

3.4 Convergence of finite difference solutions

The purpose of this section is to illustrate the difficulty of standard numerical methods in pro-
ducing accurate solutions to the Riemann problem. The slow convergence of finite difference
solutions to the analytical solution of nonstrictly hyperbolic conservation laws has been noted
by many authors [14; 23; 24]. The main reason is the presence of contact discontinuities in
the solution. Contact discontinuities are indifferent waves and, unlike genuine shocks, are not
self-sharpening. As a result, some essential features of the solution may be overwhelmed by
numerical diffusion introduced by standard finite difference schemes. Other high-order finite
difference methods (such as Essentially Non-oscillatory schemes [25]) will generally reproduce
contact discontinuities much more accurately, but these methods are not commonly used in
reservoir simulation.

In Figure 10 we compare the analytical solution to a Riemann problem of type R3 with
finite difference solutions on increasingly refined grids. We used the single-point upstream finite
difference method, and a Crank-Nicolson scheme for integration in time. The time step was
chosen so that the Courant number Co = σmaxδt/δx was approximately equal to 2. Results of
the finite difference calculations are shown at time t = 0.25.
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Figure 10. Comparison between analytical and finite difference solutions for a Riemann prob-
lem of type R3. Left: Numerical solution with 100 and 500 gridblocks. Right:
Numerical solution with 2000 gridblocks.

One of the distinctive features of the solution is the presence of a contact discontinuity
(transitional wave) of large amplitude, related to the formation of a solvent bank. It is apparent
from the figure that the finite difference solutions with 100 and 500 gridblocks are unable to
resolve this feature. In this case, an accurate solution requires a grid with at least 2000 cells.

4 Conclusions

In this paper we have described a mathematical model and the associated Riemann solver for
the simulation of first-contact miscible gas injection processes. Under certain simplifying as-
sumptions, the system describing two-phase, three-component, first-contact miscible flow is a
2 × 2 hyperbolic system. It is not, however, strictly hyperbolic. Using an analogy with the
system of equations governing polymer flooding [13; 14], we give the complete solution to the
Riemann problem. We show that the solution may involve more than two waves, one of which
is always a contact discontinuity.

The efficiency of the front-tracking algorithm to be presented in Part 2 relies heavily on the
availability of an analytical Riemann solver. The solvent system studied here has two features
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that make the front-tracking scheme particularly attractive: (1) rarefaction curves and shock
curves coincide in composition space, so there is no need to perform (an expensive) numerical
integration to characterize rarefaction waves; (2) some waves are contact discontinuities, which
are not self-sharpening. As shown in Section 3.4, such waves are very sensitive to numerical
diffusion introduced by classical finite difference schemes, but they are resolved exactly in a
front-tracking solution.

From the point of view of the physical model, the work presented here can be extended in a
number of ways. An important extension is to account for viscous fingering. Two of the most
commonly used macroscopic models for single-phase miscible displacements are those proposed
by Koval [26] and Todd and Longstaff [27]. Blunt and coworkers proposed an extension of these
models to two-phase, three-component, first-contact miscible flows [28; 29]. Analytical solutions
to this model have been developed by Blunt and Christie [28] and, recently, in [11; 12]. These new
solutions may eventually lead to the development of a full Riemann solver for multiphase first-
contact miscible flow models that account for the macroscopic effect of viscous fingering. Another
interesting but challenging extension would be to consider multicontact miscible problems, in
which the hydrocarbon components do not mix in all proportions. Analytical solutions for
particular initial and injection states have been presented recently by LaForce and Johns [30].

The use of the analytical Riemann solver in the context of front-tracking/streamline simula-
tion is the subject of the second paper in this series [31].
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