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Abstract. Multiscale solution methods are currently under active investigation for the simu-
lation of subsurface flow in heterogeneous formations. These procedures capture the effects of
fine-scale permeability variations through the calculation of specialized coarse-scale basis func-
tions. Most of the multiscale techniques presented to date address subgrid capturing in pressure
solution (elliptic/parabolic equations). In this paper we propose a multiscale method for solving
transport equations on a coarse grid. In this method the global flow is computed on a coarse
grid scale, but information from a fine scale velocity field is used to improve accuracy. The
method is applied to incompressible and immiscible two-phase flow on a synthetic geological
model with corner-point grid geometry. Although corner-point grids are given on a logically
Cartesian format, the resulting grids are unstructured in physical space. The numerical results
demonstrate that the multiscale method gives nearly the same flow characteristics as simulations
where the transport equation is solved on the scale of an underlying fine grid.

1. Introduction

Subsurface formations typically exhibit heterogeneities spanning a wide range of length scales.
Through the use of sophisticated geological and geostatistical modeling tools, engineers and geol-
ogists can now generate highly detailed, three dimensional representations of reservoir properties.
Such models can be particularly important for reservoir management, as fine scale details in for-
mation properties, such as thin high permeability layers or thin shale barriers, can dominate
reservoir flow behavior. The direct use of these highly resolved models for reservoir simulation
is not generally feasible because their fine level of detail (tens of millions of cells or grid blocks)
places prohibitive demands on computational resources. Typically, upscaled or multiscale mod-
els are employed for such systems. The main idea of upscaling techniques is to form coarse-scale
equations with a prescribed analytical form that may differ from the underlying fine-scale equa-
tions. In multiscale methods, the fine-scale information is carried throughout the simulation
and the coarse-scale equations are generally not expressed analytically, but rather formed and
solved numerically.

Most of the multiscale techniques presented to date address subgrid capturing in the pressure
solution which has an elliptic nature. In this paper we propose a multiscale method for solving
transport equations for the saturation field. More difficulties are typically encountered in de-
veloping multiscale methods for the saturation equation. Due to the hyperbolic nature of this
equation, and the high correlation length features often present in the fine scale permeability
field, distant (nonlocal) effects can strongly impact coarse grid parameters. This renders coarse
grid properties dependent on global boundary conditions and can lead to process dependence
(i.e., a lack of robustness) in the coarse grid description. Our approach entails the computation
of the saturation on a coarse grid scale using the information from a fine scale velocity field.
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The method is based on a finite volume methodology that resolves both coarse scale and fine
scale flow patterns. The proposed method is suitable for complex unstructured grids, includ-
ing general corner-point grids, the industry standard in reservoir modeling and simulation and
has some similarities with the multiscale framework developed for nonlinear equations [12], and
with pseudo type approaches [15, 8, 16], but there are also important differences. The basic idea
behind the current method is to solve first the global flow on a coarse grid, and then to recover
a plausible saturation field on an underlying fine grid from the coarse scale solution. The main
task in this approach is to determine the map from a coarse grid to a finer subgrid that reflects
important fine scale features in the velocity field, and accounts for flow history. Once this map
is determined, the proposed coarse grid formulation allows to compute the saturation field on
the coarse grid.

The proposed methodology is based on a sequential splitting of the governing equations into an
elliptic equation for pressure and velocities, and a hyperbolic (or parabolic) equation that models
the phase transport. The elliptic part is solved on a coarse grid with a multiscale mixed finite
element method [5, 3]. This method provides high resolution velocity fields at low computational
cost. Multiscale finite element methods, as proposed in [13], and their modifications are not new
in porous media flow simulations. In previous findings, multiscale finite element methodology
has been modified and successfully applied to two-phase flow simulations in [14] and in [9, 5].
Arbogast ([6]) used variational multiscale strategy for capturing the subgrid effects in two-phase
flow simulations. We remark that special basis functions in finite element methods have been
used earlier in [7].

The paper is organized as follows. In Section 2 we introduce the equations for immiscible
and incompressible two-phase flow. In Section 3 we present the multiscale mixed finite element
method (MsMFEM) [3] that is used to compute flow velocities. In Section 4 we describe the new
multiscale method for solving the transport equation and provide the analysis of the proposed
method. Finally, numerical results are presented in Section 5 to demonstrate the performance
of the methodology on a corner-point grid model.

2. Mathematical model

We consider immiscible and incompressible two-phase flow without effects from gravity and
capillary pressure. The equations are derived from conservation of mass for each phase j:

φ
∂Sj

∂t
+ ∇ · vj = qj,

where the phase velocities vj are given by Darcy’s law:

vj = −λjK∇pj.

Here φ is the porosity, Sj is the j-phase saturation (fraction of the void occupied by phase j)
and qj is a source (or sink) term. In Darcy’s law, K is the permeability tensor, pj is the phase
pressure and, λj = krj/µj, where krj and µj are the relative permeability and viscosity of phase
j respectively. The relative permeability models the reduced conductivity of a phase due to the
presence of other phases, and is assumed to be function of the saturations only.

Let the two phases be oil and water (j = o, w). Since we neglect effects from capillary
pressure so that ∇po = ∇pw, we assume po = pw = p. Then the Darcy equations combined with
conservation of mass yields the pressure equation:

v = −λ(Sw, So)K∇p,

∇ · v = q,
(1)

where v = vw + vo, λ = λw + λo, and q = qw + qo.
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If we assume that the two phases occupy the void space completely, i.e., that Sw + So = 1,
and introduce the water fractional flow fw(Sw) = λw(Sw)/λ(Sw, 1−Sw), then we may write the
conservation equation for water, henceforth called the saturation equation, as follows:

φ
∂Sw

∂t
+ ∇ · (fwv) = qw. (2)

The system of equations (1)–(2) will be solved using a sequential splitting, i.e., the pressure
equation is solved at the current time-step using saturation values from the previous time-step.
Moreover, for ease of notation, we will henceforth drop the w-subscripts of Sw.

3. A multiscale mixed finite element method for elliptic problems

Let Ω ⊂ Rd, and denote by n the outward pointing unit normal on ∂Ω. In mixed formulations
of (1) with no-flow boundary conditions on ∂Ω, one seeks (v, p) ∈ H div

0 (Ω) × L2(Ω) such that
∫

Ω
v · (λK)−1u dx−

∫

Ω
p∇ · u dx = 0 for all u ∈ Hdiv

0 (Ω), (3)

∫

Ω
l∇ · v dx =

∫

Ω
ql dx for all l ∈ L2(Ω). (4)

Here Hdiv
0 (Ω) =

{

v ∈ (L2(Ω))d : ∇ · v ∈ L2(Ω) and v · n = 0 on ∂Ω
}

. Note that to determine
p one must add an additional constraint such as

∫

Ω p = 0.

In a mixed FEM discretization of (3)–(4), the spaces Hdiv
0 (Ω) and L2(Ω) in which we seek the

pressure and velocity solutions are replaced by finite dimensional subspaces, say U and V , that
typically consists of low order piecewise polynomials. In a MsMFEM one attempts to design the
approximation space for velocity in such a way that it embodies the impact of subgrid variations
in K. The MsMFEM outlined below [3] is a variant of the method introduced by Chen and Hou
[9] that, in addition to giving mass conservative velocity fields on the discretization grid (the
coarse grid), provides a mass conservative velocity field on an underlying subgrid. This feature
allows users to choose grids for flow and transport simulations in a nearly seamless fashion.

To formulate the MsMFEM introduced in [3], let T = {Ti} be a grid where each grid block
T is a connected union of grid cells in an underlying subgrid K = {Ki}. The grid T will be
referred to as the coarse grid, and the subgrid K will be referred to as the fine grid. Let the
approximation space for pressure be the space of piecewise constant functions on T , i.e.,

U = span{u ∈ L2(Ω) : u|T is constant for all T ∈ T }.

To define the approximation space V for velocity v, denote by Γij = ∂Ti∩∂Tj the non-degenerate
interfaces in the coarse grid. To each interface, we assign a corresponding basis function ψij.
This basis function is supported in Ωij = Ti ∪ Γij ∪ Tj , and is related to a function φij through
Darcy’s law: ψij = −λK∇φij. The function φij, and thus also the basis function ψij , is obtained
by solving (numerically) the following local elliptic problem:

ψij · nij = 0 on ∂Ωij , ∇ · ψij =

{

fi(x)/
∫

Ti
fi(x)dx for x ∈ Ti,

−fj(x)/
∫

Tj
fj(x)dx for x ∈ Tj .

(5)

Here nij is the outward pointing unit normal on ∂Ωij , and

fi =

{

f if
∫

Ti
f dx 6= 0,

λ trace(K) else.
(6)

The MsMFEM approximation space V for velocity is now the span of the basis functions {ψij}.
The source terms {fi} are chosen as defined by (6) for the following reasons. First, they

produce basis functions that force unit flux across associated coarse grid interfaces, i.e.,
∫

Γij
ψij ·
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nds = 1, where n is the unit normal to Γij pointing into Tj . This implies that the MsMFEM
solution {vij} for velocity gives the fluxes across the respective coarse grid interfaces. Second, if a
conservative method is used to compute basis functions, then the velocity v =

∑

vijψij conserves
mass on the subgrid K. Third, choosing special source terms in blocks with a source allows the
method to model radial flow around point or line sources, such as wells in oil-reservoirs, on the
subgrid scale. Finally, by letting fi scale according to the permeability as in (6), one can to
some extent avoid unnaturally high flow velocities in low-permeable fine grid cells.

The computational complexity of a MsMFEM is not significantly less than the computational
complexity of solving the full problem on the fine grid with a (very) efficient linear solver. Note,
however, that the most expensive task in a MsMFEM, the computation of the basis functions
is perfectly parallel computation since each basis function ψij can be computed independently.
Another advantage for the purpose of running two-phase flow simulations, for which the pressure
equation (1) needs to be solved multiple times due to dynamic changes in the mobility λ, is that
basis functions often need to be recomputed only when flow conditions change significantly. This
claim is supported by an analysis of the saturation dependence in the pressure solution [11]. Here
it is shown that when flow conditions do not change, the time varying velocity field is strongly
influenced by the initial velocity field. The computation of basis functions then becomes part of
a preprocessing step, and MsMFEMs become analogous to single-phase flow upscaling methods,
see e.g., [10] and references therein. The computational complexity of a MsMFEM is also
comparable to the computation cost of single-phase flow upscaling procedures. We should add,
however, that numerical experiments show that if saturation profiles exhibit sharp fronts, then a
slight improvement in accuracy can be obtained by regenerating basis functions in regions where
the saturation has changed substantially since the previous time-step [5]. Similar observations
was made by Jenny et al. [14] for the multiscale finite volume method.

4. A multiscale method for hyperbolic transport equations

The key idea behind the multiscale method that we propose here is to use information from
a velocity field with subgrid resolution to improve accuracy of flow simulations on coarse grids.
To give an outline of the algorithm, denote, as in Section 3, the coarse grid by T = {Ti} and an
underlying fine grid by K = {Ki}. Although we employ the same notation as in Section 3, the
grids used here need not coincide with the coarse and fine grids for the MsMFEM. However, we
assume that the MsMFEM provides fluxes across all fine grid interfaces {γkl = ∂Kk ∩ ∂Kl}.

The basic algorithm for the proposed multiscale method reads as follows:

For each Ti ∈ T , compute

S̄n+1
i = S̄n

i +
4t

∫

Ti
φdx





∫

Ti

qw(Sn) dx−
∑

γkl⊂∂Ti

Vkl(S
n)



 , (7)

and set Sn+1|Ti
= ITi

(S̄n+1
i ).

Here 4t denotes the time-step, S̄n
i the net saturation in T at time t = tn, and

Vkl(S) = max{vklfw(Si),−vklfw(Sj)},

where vkl is the Darcy flux across the corresponding fine grid interface γkl that we get from the
MsMFEM. Thus, Vkl is the standard upstream flux function with respect to γkl. The operators
{IT : T ∈ T } map each grid block saturation onto plausible fine grid saturation fields inside the
respective blocks. Thus, for each time-step, we update first coarse grid-block saturation values,
and then map the coarse grid saturation field onto a plausible fine-grid saturation field.
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Observe that in (7) the flux across ∂T is evaluated by summing fluxes across the fine grid
interfaces γkl ⊂ ∂T . Thus, rather than using flux functions that model the total flux across coarse
grid interfaces as functions of the net saturation in the upstream block, we evaluate the term
fwv in (2) on the scale of the fine grid. This requires that we have fine grid saturation values in
all cells adjacent to grid block boundaries. The coarse-to-fine grid interpolation operators {IT }
are therefore not just tools to get better resolution, they also help to improve global accuracy of
the multiscale method by providing a better approximation to flow across coarse grid interfaces.
Indeed, without the interpolation operators, the flow across the coarse grid interfaces would
have to be computed on the basis of the net grid block saturations only. This will cause loss of
accuracy unless proper pseudo-functions [15, 16, 8] are used.

4.1. The coarse-to-fine grid interpolation operators. In the following we attempt to con-
struct operators that map each coarse grid saturation field onto a fine scale saturation profile
that is close to the corresponding profile that one would get by solving saturation equation on
the global fine grid. The basic idea is to approximate the fine grid saturation in Ti as a linear
combination two basis functions Φk

i and Φk+1
i with

∫

Ti
Φk

i φdx ≤ S̄n
i

∫

Ti
φdx <

∫

Ti
Φk+1

i φdx:

ITi
(S̄n

i ) = ωΦk
i + (1 − ω)Φk+1

i . (8)

The basis functions Φk
i = χi(x, τk) represent snapshots of the solution of the following equation:

φ
∂χi

∂t
+ ∇ · (fw(χi)v) = qw in Ti. (9)

That is, each basis function is the solution of the local problem (9) at a particular time instant
τk. Note that τ here refers to time for the temporal evolution of χi, and not related to the time
t for for the temporal evolution of the global solution S, i.e., k is not related to n.

The parameter ω in the interpolation (8) is chosen such that the interpolation preserves mass,
i.e., such that

∫

Ti

ITi
(S̄n

i )φdx = S̄n
i

∫

Ti

φdx.

To minimize the interpolation error it is important that the the basis functions span the range
of saturation values with nearly equidistant interpolation points, i.e., the values

1
∫

Ti
φdx

∫

Ti

Φk
i φdx

should be approximately uniformly distributed in the interval [0, 1]. The “snapshots” that define
the multiscale basis functions are therefore selected to satisfy this criteria.

Finally, for the local problem (9) to be well-defined, we need to specify initial conditions and
boundary conditions, and provide a possibly time-varying velocity field in Ti. We assume below
that the local equations (9) are solved using an upstream-weighted finite volume method. Thus,
we need only specify boundary conditions on the inflow boundaries Γin

T = {γjl ⊂ ∂T : Kl ⊂
T, vjl < 0}.

Conceptually it is possible to reconstruct a fine grid saturation profile provided that we know
what the velocity field will be during the simulation, and know the correct initial and boundary
conditions. However, we do not know a priori what the velocity will be, nor what boundary
conditions to impose. Assumptions must therefore be made to approximate how the velocity
and saturation evolve.

We describe first a local approach that was introduced in [1] in which no knowledge of what
happens in “real-time” is required. This approach assumes that global boundary conditions for
the pressure equation (1) are not changed, and that the source term q is fixed. Hence, in this
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approach we assume that the velocity changes only due to variations in the total mobility λ.
This implies that flow patterns will generally not change significantly from one time step to
the next. One can therefore use the velocity field v obtained by solving the pressure equation
(1) at initial time to estimate how the saturation profile will evolve locally. In the multiscale
formulation introduced in [1] we construct the saturation basis functions (9) using v = v(x, t0)|T
and fw = 1 on Γin

T .
Next, we introduce a new global approach that is capable of accounting for significant changes

in flow conditions during simulation. To this end we need to build more information about
the global problem into the local equations. In particular, in order to allow the velocity v in
(9) to be updated whenever global flow conditions change, the time-scale in the local problems
has to be the same as for the global problem (2). One option is to solve the local problems
“simultaneously”, and use solutions in neighboring grid-blocks at the previous time-step to
impose boundary conditions. Thus, in this approach the basis functions Φk

i are sampled locally
from solutions obtained using the following domain decomposition algorithm:

For each T ∈ T , do

Sn+1
i = Sn

i +
4t

∫

Ki
φdx





∫

Ki

qw(Sn+1) dx−
∑

j 6=i

V ∗
ij



 ∀Ki ⊂ T, (10)

where

V ∗
ij =

{

Vij(S
n) if γij ⊂ Γin

T (tn),
Vij(S

n+1) otherwise.

Although the global approach is not significantly less computational expensive than a full
simulation on the fine grid, there are reasons why this approach could still be justified. Clearly,
the domain decomposition method (DDM) is easily parallelizable, and have reduced memory
requirements. This can help accelerate simulations, and solve very large problems, also on single-
processor computers. However, a drawback with the DDM is that it gives mass balance errors.
By using the multiscale algorithm with interpolation operators generated using the DDM, one
eliminates mass balance errors while preserving the main flow trends on the fine grid. The
multiscale algorithm with basis functions generated using the DDM can therefore be viewed as
a way of correcting solutions obtained with the DDM for mass balance errors.

For applications to reservoir simulation, there are other important reasons why the global
approach may be preferred to the local approach. First, flow conditions in real reservoirs change
frequently due to frequent changes in well-rates and well configurations. The cost of regenerating
the local saturation basis functions each time flow conditions change could therefore easily
exceed the cost of running a full simulation with the DDM. Second, to account for uncertainty
in geostatistical reservoir models, it is common to run simulations on multiple realizations of
the reservoir. These simulations are performed with the same injection-production history, only
the geostatistics are changed. Hence, if the permeability changes in a way that does not alter
flow patterns significantly, then saturation basis functions obtained for one realization could be
used to run coarse grid simulations on other realizations at low computational cost. Finally,
the computational cost of the multiscale algorithms can be efficiently reduced if it is combined
with an adaptive strategy that uses multiscale basis functions only where fine grid information
is important. This issue was explored for the local approach in [1].

4.2. Analysis. Next, we present the analysis of the proposed approach. The analysis is based
on some of the estimates derived in [1]. The first step of the analysis is to separate the error
that stems from the coarse grid equation (7) from the error that stems from the interpolation
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of the coarse-grid saturation field onto a fine-grid saturation field. Denote

S
n

=
1

|T |

∫

T

Sndx,

where Sn = S(x, tn) is the fine scale saturation field at time t = tn, and denote by Sn
h the

corresponding saturation field obtained using the proposed multiscale technique. In the rest of
the analysis, we will assume that the velocity field used in (9) is exact, i.e. that v = v(x, S(x, t0))
at all times t > 0, and neglect the source terms.

We will present the analysis for a generic coarse grid block, and thus ignore the index of a
coarse grid block. Denote

F (S) = −
1

∫

T
φ(x)dx

∫

∂T

fw(S)(v · n)ds.

Then (7) in each T can be written as

S̄n+1
h = S̄n

h + ∆tF (I(S̄n
h )) + o(∆t). (11)

For simplicity, the remainder is denoted by o(∆t). Note that this error is due to temporal
(backward Euler) discretization. If the average saturation is a smooth function with respect to
time then the remainder is O((∆t)2).

The equation for average of fine-scale saturation can be obtained by averaging the fine-scale
equation:

S̄n+1 = S̄n + ∆tF (Sn) + o(∆t). (12)

Our objective is to estimate the error δn+1 = S̄n+1 − S̄n+1
h . From (11) and (12), we have

δn+1 − δn = F (Sn)∆t− F (I(S
n
h))∆t+ o(∆t)

=
[

F (Sn) − F (I(S
n
))

]

∆t+
[

F (I(S
n
)) − F (I(S

n
h))

]

∆t+ o(∆t).

In [1] we showed for the local approach that

|δn| ≤o(∆t) + ∆t
n−1
∑

k=0

(1 + C∆t)k|F (Sn−k) − F (I(S
n−k

))|

≤o(∆t) +

[

eC(n∆t) − 1

C

]

[

max
1≤i≤n

|F (Si) − F (I(S
i
))|

]

.

This result is valid in the regions away from sharp interfaces because the proof assumes that
F (I(S)) is a smooth function of S which does not hold, in general, in the regions of sharp
interfaces.

In [1], an estimate for δn is presented when the inlet boundary conditions for the saturation
is chosen apriori. The typical inlet boundary conditions are Sin = 1 at the inlet, as it was
mentioned earlier, or the use of single-phase flow information based on time of flight function.
The latter is motivated by an analysis which shows that S is a smooth function of time of flight.
The analysis reveals two type of errors; (1) errors due to the variations of the saturation along
the inlet boundaries (2) errors due to the evolution of the saturation along each streamline.

In the global approach, the saturation values at previous (coarse) time step is used to impose
inlet boundary conditions for (9). This approach will therefore generally give more accurate
solutions than the previously proposed local approach where apriori inlet boundary conditions
are imposed for the saturation. However, because the saturation basis functions are sampled
from the solution obtained with (10) where the inlet boundary conditions on the boundary of
each coarse grid block are not changed during the time interval corresponding to a coarse time
step, the proposed approach introduces errors. Moreover, if the velocity differs from the velocity
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in the initial DDM simulation from which the saturation basis functions are sampled, e.g., if the
permeability field has been perturbed as part of an history matching loop, then an additional
error occurs. We discuss now briefly the nature and influence of these errors.

First, to understand the error due the fact that the DDM employs static inlet boundary
conditions for the duration of each coarse time step, we consider the saturation equation on
time of flight coordinates given by (assume for simplicity φ = 1)

v · ∇τ = 1.

Then, the saturation equation along each streamline becomes

∂S

∂t
+
∂f(S)

∂τ
= 0.

If the velocity variation over the coarse time interval [t, t + ∆t] is small, then the error due to
unchanged value of the saturation at the inlet boundary can be estimated by maximum change
of |S(τ, t+ ∆t) − S(τ, t)|. Because this term reflects the saturation change in [t, t+ ∆t] (which
is ∆t

∫

∂T
f(S)(v ·n)ds) it is o(∆t). Thus, imposing the saturation value at previous coarse time

step, introduces an error of order o(∆t) along each streamline. Consequently, the variation of
the saturation along the inlet is of order o(∆t) and it is consistent with the reference fine-scale
saturation distribution at the inlet. From here, we obtain that the saturation error at the inlet
boundaries is small, and consequently, δn is small.

Next, we discuss the error due to velocity change. In the proposed approach, the velocity
change occurs due to mobility (total permeability) changes in multi-phase flows. These changes
will generally not alter flow patterns (streamlines) substantially. Permeability changes that
do not significantly alter streamlines also occur during certain history matching approaches.
If the permeability is modified so that the large scale flow patterns resemble closely the flow
patterns in the initial DDM simulation, then the corresponding multiscale basis functions for
the saturation can be applied. The reason why the streamlines are not significantly changed
is that flow patterns are often dominated by source and sink (well) configurations, and that a
simple scaling of the permeability does not alter the streamlines, it only rescales the velocity
along the streamlines. Hence, when the source and sink configuration is not changed, and the
permeability field is perturbed in a way that retains the dominating large scale heterogeneity
structures, then the fine-scale velocity field will basically be re-scaled by a coarse-scale time
dependent function. Because the interpolation operators are invariant with respect to re-scaling
of the velocity field (cf. [1]), the saturation solution error caused by a small perturbation of the
velocity field will be small in general. This observation is supported by the numerical results in
the next section.

The errors due to small perturbations of streamlines can be analyzed by introducing an
additional time of flight function for perturbed streamlines and estimating the difference between
the saturation fields via the difference of time of flights. We have performed similar analysis in
[2] for estimating the error due to adaptive coarsening and omit this discussion here.

The above argument does not hold for the regions of sharp interfaces. If a sharp interface
passes through several coarse blocks during [t, t+ ∆t], then the L∞ error in the saturation will
be of order O(1) due to the error in the location of sharp interface. The error will result in
a saturation error in L1 norm of order of coarse mesh size. Sharp interfaces may, however, be
tracked separately using an adaptivity criteria [1].

5. Numerical results

In the current section we test the proposed methodology on a synthetic reservoir with corner-
point grid geometry. The corner-point grid has vertical pillars, as shown in Figure 1, 100 layers,
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Figure 1. A corner-point model with vertical pillars and 100 layers. To the
right is a plot of the permeability field on a logarithmic scale. The model is
generated with SBEDTM , and is courtesy of Alf B. Rustad at STATOIL.

and 29629 active cells (cells with positive volume). The permeability ranges from 0.1 mD to 1.7
D, the porosity is assumed to be constant, and the water and oil mobilities are defined by

λw(S) =
S2

µw
and λo(S) =

(1 − S)2

µo
, (13)

where we assume that the oil and water viscosities are equal: µw = µo = 0.003 cp.
The coarse grid (for both the MsMFEM and the multiscale method for transport) is con-

structed by subdividing the corner-point grid, consisting of 30-by-30-by-100 corner point cells,
into 6-by-6-by-20 grid blocks with equal number of corner-point cells. Note however that the grid
blocks do not contain the same number of active cells. Indeed, some grid blocks are non-active
so that the total number of grid blocks is 538. Hence, although the corner-point grid is logically
Cartesian, it is unstructured in physical space. However, unlike fully unstructured grids, the
logical Cartesian format allows us to coarsen the grid “uniformly” in the logical index space.
The use of different coarsening strategies has been explored for the MsMFEM in [4].

The corner-point grid serves as the subgrid for the mutiscale method for transport. The
basis functions for the MsMFEM are computed using the lowest-order Raviart-Thomas mixed
FEM on a conforming tetrahedral subgrid of the corner-point grid. The tetrahedral grid contains
147344 non-degenerated tetrahedrons. We want to emphasize that although the MsMFEM basis
functions are recomputed only if flow conditions change, the pressure equation (1) is solved
repeatedly to account for mobility variations.

To measure the overall accuracy of a saturation solution we compute the error in the fine-
and coarse-grid saturation profiles relative to a reference solution,

e(S, Sref , t) =
‖φSref(·, t) − φS(·, t)‖L2

‖φSref(·, t) − φSref(·, 0)‖L2

.

Here time is measured in pore-volumes injected (PVI), i.e., time measures the fraction of the
total accessible pore-volume in Ω that has been injected into Ω. The reference solution Sref is
computed using an implicit upstream method on the corner-point grid. Moreover, to see if the
multiscale method resolves high flow regions adequately, we compare water-cut curves (fraction
of water in the produced fluid) for the solution SMs obtained using the multiscale method with
water-cut curves corresponding to the reference solution, and a coarse-grid solution SC obtained
by solving the saturation equation on the coarse grid with an implicit upstream method.

We consider first a test-case where we inject water water at a fixed rate along a vertical column
at one of the corners, and produce at a fixed rate along a vertical column at the opposite corner.
For this problem we consider only the local approach to generating saturation basis functions.
Figure 2 shows the respective water-cut curves, and how the saturation error evolves during
the simulation for SMs and SC . The results illustrate that the multiscale method with basis
functions generated using the local approach gives a moderate improvement over the coarse grid
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Figure 2. Left: water-cut curves for Sref , SMs, and SC . Middle: e(SMs, Sref , t)
and e(SC , Sref , t). Right: e(S̄Ms, S̄ref , t) and e(SC , S̄ref , t).
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Figure 3. Water-cut curves and fine and coarse grid saturation errors for the
case with perturbed permeability field, and changed flow conditions at 0.7 PVI.

solution in terms of overall accuracy of the saturation profiles. Both solutions produce water-cut
curves that match reasonably well the water-cut curve produced by the reference solution.

Next, we apply the multiscale method with basis functions generated using the global approach
on the original model to run a simulation with a perturbed permeability field. The perturbation
is performed by multiplying the permeability in each grid cell Ki cell by 10δi , where δi is a
random value in the interval (−2, 2). The perturbed permeability ranges roughly from 10−6

to 102 D. The well locations are changed at 0.7 PVI. That is, if, say, corner 4 is opposite to
corner 1, and corner 3 is opposite to corner 2, then we inject at corner 1 and produce at corner
4 for t < 0.7 PVI. For t > 0.7 PVI we inject at corner 2 and produce at corner 3. The results
in Figure 3 demonstrate that, although perturbing the data changes the fine-grid saturation
solution locally, the multiscale method continues to give better accuracy than the coarse scale
solution on both coarse and fine grids, and to provide relatively accurate water-cut curves.

Finally we perform a simulation with the same set-up as above, but now with a high mobility
ratio, i.e., with µo = 10µw. Figure 4 shows that the results obtained for this case are qualitatively
similar to the results in Figure 3 that were obtained with µo = µw. In addition, in Figure 5 we
plot the three saturation solutions (reference, multiscale, and coarse grid) at 0.5 PVI, 1 PVI,
and 1.5 PVI. Notice the effect of altered well-locations in Figure 4 (b) relative to Figure 4 (a).
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Figure 4. Water-cut curves and fine and coarse grid saturation errors for case
with µo = 10µw, perturbed permeability field, and changed flow conditions at
0.7 PVI.

6. Concluding remarks

The main purpose of this paper has been to introduce a multiscale method for solving trans-
port equations that arise in models for immiscible two-phase flow in porous media. The basic
idea is to use information from a velocity field with subgrid resolution that is obtained using a
multiscale mixed finite element method to improve accuracy of flow simulations on coarse grids.
The algorithm proceeds in two steps: first the flow is computed on a coarse grid, and then
the coarse grid solution is projected onto a finer subgrid. The subgrid solution is used in the
coarse grid equations, along with fine grid velocities, to enhance the accuracy of the coarse grid
solution. Thus, the construction of pseudo relative permeability functions are avoided, and fine
scale structures in the velocity field are treated in a mathematically consistent manner. The
methodology has been applied to immiscible and incompressible two-phase flow on a synthetic
reservoir model with corner-point grid geometry. The numerical results demonstrate that the
multiscale method for the transport provides more accurate solutions than a standard coarse
grid solution, and can serve as a more robust alternative to two-phase flow upscaling.
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