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Summary We present a hierarchical multiscale method for the numerical solution of two-phase flow in
strongly heterogeneous porous media. The method is based upon a mixed finite-element formulation, where
basis functions are computed numerically on a coarse grid to correctly and accurately account for subscale
permeability variations from an underlying (fine-scale) geomodel.

Introduction
Natural porous rock formations are heterogeneous at all length scales. When modelling fluid
flow in porous formations, it is generally not possible to account for all pertinent scales, from the
micrometre scale of pore channels to the kilometre scale of the full reservoir. Instead, one has
to create models for studying phenomena occurring at a reduced span of length scale, and any
modelling attempt should therefore generally be accompanied by appropriate rescaling (up- and
downscaling) techniques.
Here we focus on how to incorporate fine-scale features from a detailed geomodel into flow simu-
lations on a reservoir scale. Whereas industry-standard geomodels may contain between106–109

grid cells, commercial reservoir simulators are typically capable of simulating models with104–
106 degrees of freedom. A large activity is therefore devoted to upscaling/downscaling between a
detailed reservoir model and a coarser simulation model.
We present an alternative approach based on a multiscale formulation for pressure and flow veloc-
ities, where the global flow is computed on a coarse grid and fine-scale heterogeneity is accounted
for through a set of generalised, heterogeneous basis functions. The basis functions are computed
numerically by solving local flow problems (as is done in many flow-based upscaling methods),
and when included in the coarse-grid equations, the basis functions ensure that the global equa-
tions are consistent with the local properties of the underlying differential operators. Several
different multiscale methods have been proposed, including the multiscale mixed finite-element
method (MsMFEM) [2], the multiscale finite-volume method [9], and numerical subgrid upscal-
ing [6]. Common for all three methods is that they produce mass-conservative solutions both on
the coarse grid and on the underlying fine grid, and they may thus be used either as very robust
upscaling methods or as efficient fine-scale solvers.

Multiscale Mixed Finite Elements
The Two-Phase Flow Model
We consider incompressible flow of two phases (water and oil). For simplicity, we neglect the
effects of gravity and capillary forces. The flow equations can then be formulated as an elliptic
equation for the pressurep and total velocityv,

v = −(λw + λo)K∇p, ∇ · v = q. (1)

Hereq is a source term representing injection and production wells,K is the rock permeability
(i.e., the ability to transmit fluids), andλα = kr

α/µα is the mobility of phaseα, whereµα is
viscosity of phaseα andkr

α = kr
α(S) is the relative permeability, i.e., the reduced ability of the

rock to transmit fluids due to the presence of other phases. The saturationS denotes the volume
fraction of water and is described by the transport equation

φ∂tS + v · ∇f(S) = qs, (2)

whereφ is the rock porosity andf = λw/(λo + λw) is the fractional flow function.
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Figure 1: A general coarse grid overlying a uniform fine grid with the grey area giving the support of basis
functionψij .

Mixed Finite Elements
The mixed finite-element discretisation of the pressure equation (1) in a domainΩ seeks a pair
(v, p) ∈ U × V , whereU andV are finite-dimensional subspaces ofHdiv

0 (Ω) andL2(Ω), respec-
tively, such that∫

Ω
v · (λK)−1u dx−

∫
Ω
p∇ · u dx = 0, for all u ∈ U, (3)∫

Ω
l∇ · v dx =

∫
ql dx, for all l ∈ V. (4)

Thus letting{ψi} and{φk} be bases forU ⊂ Hdiv
0 (Ω) andV ⊂ L2(Ω), we obtain approximations

v =
∑
viψi andp =

∑
pkφk, where the coefficientsv = {vi} andp = {pk} solve a linear

system of the form [
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] [
v
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]
=

[
0
q

]
, (5)

where

bij =
∫

Ω
ψi · (λK)−1ψj dx, cik =

∫
Ω
φk∇ · ψi dx, and qk =

∫
Ω
φkq dx.

Multiscale Basis Functions
In a standard discretisation, the spacesU andV typically consist of low-order piecewise polyno-
mials. In the multiscale methods,U andV are given by the solution of local flow problems. Let
K = {Km} be a partitioning ofΩ into mutually disjoint grid cells. Furthermore, letT = {Ti}
be a coarser partitioning ofΩ, in such a way that wheneverKm ∩ Ti 6= 0 thenKm ⊂ Ti; see
Figure 1. LetΓij denote the non-degenerate interfacesΓij = ∂Ti ∩ ∂Tj . For eachΓij we assign
a basis functionψij ∈ Ums, and for eachTi we assign a basis functionφi ∈ V . The basis function
ψij is obtained by forcing a unit flow from cellTi to Tj ; that is, by solving a local flow problem
in Ωij = Ti ∪ Tj

ψij = −λK∇φij , ∇ · ψij =
{

wi(x), for x ∈ Ti,

−wj(x), for x ∈ Tj ,
(6)

with ψ · ν = 0 on∂Ωij , whereν is the outward-pointing unit normal to∂Ωij . To give a unit flow
from Ti to Tj , the source termswi(x) are normalized

wi(x) = Wi(x) ·
(∫

Ti

Wi(ξ) dξ
)−1

. (7)

HereWi = q for cells containing a well (i.e., for allTi for which
∫
Ti
q 6= 0). This choice ensures

a conservative approximation ofv on the fine grid. For all other cells, we chooseWi(x) = 1 or
Wi(x) = trace(K(x)). The corresponding basis functions can be seen as generalisations of the
lowest-order Raviart–Thomas basis functions in a standard mixed method. Figure 2 illustrates the
x-velocity basis functions in two different cases.
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Figure 2: Thex component of the velocity basis function associated with an edge between two cells of
different size for a homogeneous and a heterogeneous permeability field, respectively.

Producer A

Producer B

Producer C

Producer D

Injector

Tarb
ert

Upper
Ness

20 40 60 80 100 120 140 160 180 200 220

10

20

30

40

50

60

20 40 60 80 100 120 140 160 180 200 220

10

20

30

40

50

60

Figure 3: Schematic of the SPE10 reservoir model. The reservoir dimensions are1200×2200×170 ft., and
the model consists of60 × 220 × 85 grid cells. The top and bottom plots to the right depict the logarithm
of the horizontal permeability in the top layer of the Tarbert formation and the bottom layer of the Upper
Ness formation.

Discussion
In this section we show that MsMFEM: (i) is an accurate and robust alternative to upscaling; (ii)
is efficient when used as an approximate fine-scale solver for dynamic flow cases; and (iii) is very
flexible with respect to the choice of coarse grid cells, given an appropriate fine-grid solver.

Accuracy and Robustness — 10th SPE Comparative Solution Project
Model 2 from SPE10 [7] was designed as a benchmark for various upscaling techniques and
consists of two different rock formations; see Figure 3. Both formations are highly heterogeneous,
with permeability variations of more than eight orders of magnitude, but are qualitatively different.
The shallow-marine Tarbert formation is smooth, and therefore not too hard to upscale. The
fluvial Upper Ness formation contains intertwined networks of high-permeability channels and
poses severe challenges to any numerical method.
In Figure 4 we compare production curves from a MsMFEM simulation with a reference solu-
tion obtained by direct simulation on the full model. For the MsMFEM simulation we used a
5 × 11 × 17 coarse grid and computed the fluid transport on the fine grid using fluxes from the
corresponding subscale velocity field. For comparison, we also include results obtained from a
upscaling/downscaling approach [8]. The MsMFEM is able to accurately reproduce the flow in
the fine-scale channels and therefore matches the reference curves almost exactly. The upscal-
ing/downscaling approach, on the other hand, does not properly account for the coupling between
small-scale and large-scale effects and therefore fails to reproduce the production curves of the
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Figure 4: Water-cut curves after 2000 days of production for the SPE10 benchmark.

Figure 5: MsMFEM solutions for varying coarse grids on layer 85 from the SPE10 benchmark. In the left
column, the coarse-grid fluxes are used to compute fluid transport, and in the right column, the subgrid
fluxes are used to compute the transport on the original grid.
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Figure 6: Computational work (idealised) for different coarse grids, assuming a Cartesian128× 128× 128
grid on the fine-scale.

individual wells correctly. See [3] for a more thorough discussion.
Next, we consider flow in the bottom layer computed using three different coarse grids with
12 × 44 cells, 6 × 22 cells, and3 × 11 cells. Figure 5 compares saturation profiles obtained
using the coarse-grid fluxes obtained by MsMFEM, and saturation profiles obtained on the fine
60×220 grid using the subgrid fluxes. The figure shows that the resolution is improved remarkably
by utilising the inherent subgrid resolution rather than using MsMFEM as an advanced upscaling
method. Moreover, it is evident that MsMFEM is robust with respect to the size of the coarse grid.

Computational Efficiency
Depending on the nonlinearity of the system (1)–(2), the pressurep may need to be recomputed
several times throughout a simulation. In fact, the number of pressure solves in a typical flow
case of water injection into a oil reservoir is of the orderO(102). The key to the computational
efficiency of the MsMFEM is the following observation: before the water front has swept through
a coarse blockTi, the coefficientλ(S)K(x) in (6) is constant (sinceS is constant), and after the
waterfront has left the grid block,λ(S) increases slowly. After the initial pressure solve, only
a few basis functionsψij close to the water front need to be recomputed [2], unless there is an
abrupt change in the pressure field due to e.g., changing well configurations.
In Figure 6 we have plotted the computational cost for MsMFEM for different coarse grids com-
pared with the cost of a direct solution on a uniform Cartesian grid with1283 grid blocks. The
figure shows that the MsMFEM may not necessarily be more efficient than direct fine-scale so-
lution for a single pressure solve, but it is also clear that the work associated with determining
basis functions dominates the work associated with solving the global system. Hence, for a full
simulation, where a minor fraction of the basis functions need to be updated in each pressure
solve, the MsMFEM provides a potentially very large speedup. Moreover, since all basis function
can be computed independent of each other, the MsMFEM has an inherent parallelism that can be
exploited to speed up the computations.

Flexibility
A major advantage with the multiscale mixed formulation is the flexibility with respect to grids.
A bit simplified this can be stated as follows: given an appropriate solver for the fine grid system,
the multiscale method can be formulated and basis functions can be computed on (almost) any
coarse grid where each grid block consists of an arbitrary collection of connected fine-grid cells.
Moreover, numerous numerical tests show that MsMFEM isnot very sensitiveto the shape of
the coarse cells and accurate results are obtained for grids containing blocks with pretty ‘exotic’
shapes [5]. This means that the process of generating a coarse simulation grid from a complex



Figure 7: Comparison of flow velocity obtained direct simulation on an unstructured triangular grid and by
MsMFEM on an unstructured coarse grid.

Figure 8: A coarse grid defined on top of a structured corner-point fine grid. The cells in the coarse grid are
given by different colours.

geomodel can be greatly simplified, regardless of whether the fine grid is fully unstructured or is
a structured corner-point grid with geometrical complications due to faults, throws, and eroded
cells.
We end the paper by showing a few grid models to support the claim of the great flexibility
inherent in MsMFEM. As the first example we consider an unstructured triangular fine grid in 2D.
The coarse grid blocks in Figure 7 are formed as collections of fine-grid cells and can thus have
almost arbitrary polygonal shape. The resulting grid contains cells that are (almost) triangular,
quadrilateral, pentagonal, and hexagonal. By using unstructured triangular fine grids, it is easy to
adapt both the fine grid and the coarse grid to complex external and internal boundaries.
As a next example, Figure 8 shows a vertical well penetrating a structured corner-point grid with
eroded layers. On the coarse grid, the well is confined to a single cell consisting of all cells in
the fine grid penetrated by the well. Moreover, notice the single neighbouring block shaped like a
’cylinder’ with a hole.
Finally, Figure 9 shows a subsection of the SPE10 model, in which we have inserted a few flow
barriers with very low permeability. In [5] it was shown that MsMFEM becomes inaccurate if
coarse grid cells are cut into two (or more) non-communicating parts by a flow barrier. Fortu-
nately, this can be automatically detected when generating basis functions, and the resolution can



Figure 9: The upper row shows the permeability field (right), and the interior barriers (left). The lower row
shows a hierarchically refined grid (left), the barrier grid (middle), and a coarse grid block in the barrier
grid (right).

be improved by using some form of grid refinement. The figure shows two different approaches:
(i) structured, hierarchical refinement, and (ii) direct incorporation of the flow barriers as extra
coarse grid blocks intersecting a uniform3× 5× 2 grid. This results in rather exotic coarse cells,
e.g., as shown in the figure, where the original rectangular cell consisting of10 × 16 × 5 fine
cells is almost split in two by the barrier, and the resulting coarse cell is only connected through
a single cell in the fine grid. Although the number of grid cells in the barrier grid is five times
less than for the hierarchically refined grid, the errors in the production curves are comparable,
indicating that MsMFEM is robust with respect to the shape of the coarse cells.

Concluding remarks
The research has been funded by the Research Council of Norway through contracts 158908/I30,
152732/S30, and 162606/V30.
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